Sandpile groups of supersingular isogeny graphs
Journal de théorie des nombres de Bordeaux, Tome 35 (2023) no. 3, pp. 751-774.

Soient p et q deux nombres premiers distincts, et soit X p,q le graphe (q+1)-régulier dont les nœuds sont les courbes elliptiques supersingulières sur 𝔽 ¯ p et dont les arêtes sont les q-isogénies. Pour une valeur de p fixée, la distribution des sous-groupes de -Sylow du groupe jacobien de X p,q est donnée pour q. Nous constatons que cette distribution ne correspond pas à l’heuristique de Cohen–Lenstra dans ce contexte. La preuve que nous donnons utilise des représentations de Galois reliées à des courbes modulaires. Comme corollaire, nous donnons une borne supérieure sur la probabilité que le groupe jacobien soit cyclique, que nous conjecturons être optimale.

Let p and q be distinct primes, and let X p,q be the (q+1)-regular graph whose nodes are supersingular elliptic curves over 𝔽 ¯ p and whose edges are q-isogenies. For fixed p, we compute the distribution of the -Sylow subgroup of the sandpile group (i.e. Jacobian) of X p,q as q. We find that the distribution disagrees with the Cohen–Lenstra heuristic in this context. Our proof is via Galois representations attached to modular curves. As a corollary, we give an upper bound on the probability that the Jacobian is cyclic, which we conjecture to be sharp.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1262
Classification : 05C48, 11R29
Mots clés : Graphs, Jacobians, isogenies, modular curves
Nathanaël Munier 1 ; Ari Shnidman 2

1 Institut de Mathématiques de Toulouse 1 R.3 Université Paul Sabatier 118 Rte de Narbonne 31400 Toulouse, France
2 Einstein Institute of Mathematics The Hebrew University of Jerusalem Edmund J. Safra Campus Jerusalem 9190401, Israel
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2023__35_3_751_0,
     author = {Nathana\"el Munier and Ari Shnidman},
     title = {Sandpile groups of supersingular isogeny graphs},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {751--774},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {35},
     number = {3},
     year = {2023},
     doi = {10.5802/jtnb.1262},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1262/}
}
TY  - JOUR
AU  - Nathanaël Munier
AU  - Ari Shnidman
TI  - Sandpile groups of supersingular isogeny graphs
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2023
SP  - 751
EP  - 774
VL  - 35
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1262/
DO  - 10.5802/jtnb.1262
LA  - en
ID  - JTNB_2023__35_3_751_0
ER  - 
%0 Journal Article
%A Nathanaël Munier
%A Ari Shnidman
%T Sandpile groups of supersingular isogeny graphs
%J Journal de théorie des nombres de Bordeaux
%D 2023
%P 751-774
%V 35
%N 3
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1262/
%R 10.5802/jtnb.1262
%G en
%F JTNB_2023__35_3_751_0
Nathanaël Munier; Ari Shnidman. Sandpile groups of supersingular isogeny graphs. Journal de théorie des nombres de Bordeaux, Tome 35 (2023) no. 3, pp. 751-774. doi : 10.5802/jtnb.1262. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1262/

[1] Laia Amorós; Annamaria Iezzi; Kristin Lauter; Chloe Martindale; Jana Sotáková Explicit connections between supersingular isogeny graphs and Bruhat–Tits trees, Cryptology ePrint Archive, Report 2021/372, 2021 (https://ia.cr/2021/372)

[2] Julien Clancy; Timothy Leake; Sam Payne A note on Jacobians, Tutte polynomials, and two-variable zeta functions of graphs, Exp. Math., Volume 24 (2015) no. 1, pp. 1-7 | DOI | MR | Zbl

[3] Henri Cohen; Hendrik W. Lenstra Heuristics on class groups of number fields, Number theory, Noordwijkerhout 1983 (Lecture Notes in Mathematics), Volume 1068, Springer, 1984, pp. 33-62 | DOI | MR | Zbl

[4] John B. Conrey; William Duke; David W. Farmer The distribution of the eigenvalues of Hecke operators, Acta Arith., Volume 78 (1997) no. 4, pp. 405-409 | DOI | MR | Zbl

[5] Matthew Emerton Supersingular elliptic curves, theta series and weight two modular forms, J. Am. Math. Soc., Volume 15 (2002) no. 3, pp. 671-714 | DOI | MR | Zbl

[6] Derek Garton Random matrices, the Cohen-Lenstra heuristics, and roots of unity, Algebra Number Theory, Volume 9 (2015) no. 1, pp. 149-171 | DOI | MR | Zbl

[7] Wen-Ching Winnie Li Zeta and L-functions in number theory and combinatorics, CBMS Regional Conference Series in Mathematics, 129, American Mathematical Society, 2019, vii+95 pages (published for the Conference Board of the Mathematical Sciences) | DOI | MR

[8] Barry Mazur Modular curves and the Eisenstein ideal, Publ. Math., Inst. Hautes Étud. Sci. (1977) no. 47, pp. 33-186 (with an appendix by Mazur and M. Rapoport) | DOI | Numdam | MR | Zbl

[9] András Mészáros The distribution of sandpile groups of random regular graphs, Trans. Am. Math. Soc., Volume 373 (2020) no. 9, pp. 6529-6594 | DOI | MR | Zbl

[10] David Mumford Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, 5, Tata Institute of Fundamental Research; Hindustan Book Agency, 2008, xii+263 pages with appendices by C. P. Ramanujam and Yuri Manin, Corrected reprint of the second (1974) edition | MR

[11] Kenneth A. Ribet On modular representations of Gal (Q ¯/Q) arising from modular forms, Invent. Math., Volume 100 (1990) no. 2, pp. 431-476 | DOI | MR | Zbl

[12] Kenneth A. Ribet Images of semistable Galois representations, Olga Taussky-Todd: In memoriam. Special issue of the Pacific Journal of Mathematics, International Press, 1997, pp. 277-297 | DOI | MR | Zbl

[13] The Sage Developers SageMath, the Sage Mathematics Software System (Version 9.2) (2020) (https://www.sagemath.org)

[14] Jean-Pierre Serre Répartition asymptotique des valeurs propres de l’opérateur de Hecke T p , J. Am. Math. Soc., Volume 10 (1997) no. 1, pp. 75-102 | DOI | MR | Zbl

[15] Goro Shimura Correspondances modulaires et les fonctions ζ de courbes algébriques, J. Math. Soc. Japan, Volume 10 (1958), pp. 1-28 | DOI | MR | Zbl

[16] Joseph H. Silverman The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, Springer, 1986, xii+400 pages | DOI | MR

[17] Melanie Matchett Wood The distribution of sandpile groups of random graphs, J. Am. Math. Soc., Volume 30 (2017) no. 4, pp. 915-958 | DOI | MR | Zbl

Cité par Sources :