In 1991, Ruzsa proved a precise lower bound for the measure of the sum of two bounded sets of real numbers and involving the ratio and the diameter of . The structure of critical sets for this lower bound was described by Roton in 2018. In this paper, we describe the structure of nearly critical sets for Ruzsa’s inequality.
En 1991, Ruzsa a démontré une minoration précise de la mesure de la somme de deux ensembles bornés de réels et faisant intervenir le ratio et le diamètre de . La structure des ensembles critiques pour cette minoration a été décrite par Roton en 2018. Dans cet article, nous décrivons la structure des ensembles presque critiques pour l’inégalité de Ruzsa.
Revised:
Accepted:
Published online:
Keywords: Combinatoire additive, somme de Minkowski, structure, mesure d’ensembles, problème inverse, ensembles critiques, sumsets
Robin Riblet 1

@article{JTNB_2023__35_3_697_0, author = {Robin Riblet}, title = {Ensembles de petite somme, structure de sous-criticit\'e}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {697--749}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {35}, number = {3}, year = {2023}, doi = {10.5802/jtnb.1261}, language = {fr}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1261/} }
TY - JOUR AU - Robin Riblet TI - Ensembles de petite somme, structure de sous-criticité JO - Journal de théorie des nombres de Bordeaux PY - 2023 SP - 697 EP - 749 VL - 35 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1261/ DO - 10.5802/jtnb.1261 LA - fr ID - JTNB_2023__35_3_697_0 ER -
%0 Journal Article %A Robin Riblet %T Ensembles de petite somme, structure de sous-criticité %J Journal de théorie des nombres de Bordeaux %D 2023 %P 697-749 %V 35 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1261/ %R 10.5802/jtnb.1261 %G fr %F JTNB_2023__35_3_697_0
Robin Riblet. Ensembles de petite somme, structure de sous-criticité. Journal de théorie des nombres de Bordeaux, Volume 35 (2023) no. 3, pp. 697-749. doi : 10.5802/jtnb.1261. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1261/
[1] The -inequality on a torus, J. Lond. Math. Soc., Volume 57 (1998) no. 3, pp. 513-528 | DOI | MR | Zbl
[2] On sets with small sumset in the circle, Q. J. Math., Volume 70 (2019) no. 1, pp. 49-69 | DOI | MR | Zbl
[3] A step beyond Freiman’s theorem for set addition modulo a prime, J. Théor. Nombres Bordeaux, Volume 32 (2020) no. 1, pp. 275-289 | DOI | Numdam | MR | Zbl
[4] Recherche sur les nombres, J. Éc. Polytech., Math., Volume 9 (1813), pp. 99-116
[5] A polynomial bound in Freiman’s theorem, Duke Math. J., Volume 113 (2002) no. 3, pp. 399-419 | MR | Zbl
[6] On the addition of residue classes, J. Lond. Math. Soc., Volume 10 (1935), pp. 30-32 | DOI | MR | Zbl
[7] A historical note, J. Lond. Math. Soc., Volume 22 (1947), pp. 100-101 | DOI | MR | Zbl
[8] The addition of finite sets, Izv. Vyssh. Uchebn. Zaved., Mat., Volume 1964 (1959) no. 6, pp. 202-213 | MR | Zbl
[9] Inverse problems in additive number theory. Addition of sets of residues modulo a prime, Dokl. Akad. Nauk SSSR, Volume 141 (1961), pp. 571-573 | MR
[10] Foundations of a Structural Theory of Set Addition, Kazan Gos. Ped. Inst., 1966, 140 pages
[11] Sets with small sumset and rectification, Bull. Lond. Math. Soc., Volume 38 (2006) no. 1, pp. 43-52 | DOI | MR | Zbl
[12] Freiman’s theorem in an arbitrary abelian group, J. Lond. Math. Soc., Volume 75 (2007) no. 1, pp. 163-175 | DOI | MR | Zbl
[13] Structural additive theory, Developments in Mathematics, 30, Springer, 2013 | DOI
[14] On products of sets in a locally compact group, Fundam. Math., Volume 56 (1964), pp. 51-68 | DOI | MR | Zbl
[15] Summenmengen in lokalkompakten abelschen Gruppen, Math. Z., Volume 66 (1956), pp. 88-110 | DOI | MR | Zbl
[16] Additive Number Theory : Inverse Problems and Geometry of Sumsets, Graduate Texts in Mathematics, 165, Springer, 1996
[17] Ensembles de petite somme et ensembles de Sidon, étude de deux extrêmes, Ph. D. Thesis, Université de Lorraine, École Polytechnique (2021)
[18] On Freiman’s 2.4-theorem, Skr., K. Nor. Vidensk. Selsk., Volume 2006 (2006) no. 4, pp. 11-18 | MR | Zbl
[19] Small sumsets in : full continuous theorem, critical sets, J. Éc. Polytech., Math., Volume 5 (2018), pp. 177-196 | DOI | MR | Zbl
[20] Diameter of sets and measure of sumsets, Monatsh. Math., Volume 112 (1991) no. 4, pp. 323-328 | DOI | MR | Zbl
[21] Generalized arithmetical progressions and sumsets, Acta Math. Hung., Volume 65 (1994) no. 4, pp. 379-388 | DOI | MR | Zbl
[22] Appendix to Roth’s theorem on progressions revisited by J. Bourgain, J. Anal. Math., Volume 104 (2008), pp. 193-206 | DOI | Zbl
[23] On the Bogolyubov–Ruzsa lemma, Anal. PDE, Volume 5 (2010) no. 3, pp. 627-655 | DOI | MR | Zbl
[24] Near optimal bounds in Freiman’s theorem, Duke Math. J., Volume 158 (2011) no. 1, pp. 1-12 | DOI | MR | Zbl
[25] Large sets with small doubling modulo p are well covered by an arithmetic progression, Ann. Inst. Fourier, Volume 59 (2009) no. 5, pp. 2043-2060 | DOI | Numdam | MR | Zbl
[26] An inverse Theorem for an inequality of Kneser, Proc. Steklov Inst. Math., Volume 303 (2018), pp. 193-219 | MR | Zbl
[27] Additive Combinatorics, Cambridge Studies in Advanced Mathematics, 105, Cambridge University Press, 2006 | DOI
[28] Addendum to "The critical pairs of subsets of a group of prime order", J. Lond. Math. Soc., Volume 31 (1956), pp. 280-282 | DOI | MR
[29] The critical pairs of subsets of a group of prime order, J. Lond. Math. Soc., Volume 31 (1956), pp. 200-205 | DOI | MR | Zbl
Cited by Sources: