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Sandpile groups of supersingular isogeny graphs

par Nathanaël MUNIER et Ari SHNIDMAN

Résumé. Soient p et q deux nombres premiers distincts, et soit Xp,q le graphe
(q + 1)-régulier dont les nœuds sont les courbes elliptiques supersingulières
sur Fp et dont les arêtes sont les q-isogénies. Pour une valeur de p fixée,
la distribution des sous-groupes de ℓ-Sylow du groupe jacobien de Xp,q est
donnée pour q → ∞. Nous constatons que cette distribution ne correspond
pas à l’heuristique de Cohen–Lenstra dans ce contexte. La preuve que nous
donnons utilise des représentations de Galois reliées à des courbes modulaires.
Comme corollaire, nous donnons une borne supérieure sur la probabilité que
le groupe jacobien soit cyclique, que nous conjecturons être optimale.

Abstract. Let p and q be distinct primes, and let Xp,q be the (q + 1)-
regular graph whose nodes are supersingular elliptic curves over Fp and whose
edges are q-isogenies. For fixed p, we compute the distribution of the ℓ-Sylow
subgroup of the sandpile group (i.e. Jacobian) of Xp,q as q → ∞. We find that
the distribution disagrees with the Cohen–Lenstra heuristic in this context.
Our proof is via Galois representations attached to modular curves. As a
corollary, we give an upper bound on the probability that the Jacobian is
cyclic, which we conjecture to be sharp.

1. Introduction

Attached to any finite undirected graph X is a finite abelian group J(X),
called the Jacobian or sandpile group of X.1 One may think of J(X) as
the class group of the graph, in analogy with the divisor class group of an
algebraic curve or the ideal class group of a number field.

For any prime number ℓ, let J(X)[ℓ∞] denote the subgroup of elements
killed by some power of ℓ. As with the Cohen–Lenstra heuristics for ideal
class groups [3], we can ask about the distribution of the finite abelian ℓ-
group J(X)[ℓ∞], as X varies over a countable family of graphs.2 Recently,
Wood [17] has verified a Cohen–Lenstra-type heuristic for Erdős–Rényi
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1Other names for it are the critical group and the divisor class group. See Section 2 for the
definition.

2For the families we consider, the size of J(X) grows, so we cannot make sense of the analogous
question for the entire group J(X).
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random graphs, and Mészáros proved analogous results for random regular
graphs [9].

In this paper, we compute these distributions for certain families of
Ramanujan graphs, namely supersingular isogeny graphs. To define these
graphs, let p and q be distinct prime numbers, and assume p ≡ 1 (mod 12),
for simplicity. Let Xp be the set of isomorphism classes of supersingular el-
liptic curves E over Fp, a set of size n := (p − 1)/12. See [16, §5.4] for
background on supersingular elliptic curves. Each E ∈ Xp contains q + 1
distinct subgroups of order q, and hence admits q + 1 degree q isogenies
ϕ : E → E′, up to isomorphism. Moreover, each q-isogeny E → E′ admits
a dual q-isogeny E′ → E in the opposite direction. Let Xp,q denote the
undirected (q + 1)-regular graph whose vertex set is Xp and whose edges
correspond to q-isogenies. Set Jp,q := J(Xp,q).

Our main results determine the distribution of the finite abelian groups
Jp,q[ℓ∞], when p and ℓ are fixed and q → ∞. Thus, the number of vertices is
fixed, while the degree of the graph goes to infinity. Our proof makes use of
the link between the graphs Xp,q and the Galois representation attached to
the modular curve X0(p), as we shall explain. It would also be interesting
to consider families where q is fixed and p → ∞, but this would require
different methods.

1.1. Results. When p is fixed, the groups Jp,q carry an extra structure
which heavily influences their distribution. Namely, they are each modules
for a certain ring T, called the Hecke algebra. To define T, let Lq be the
Laplacian of Xp,q, viewed as a linear operator on the space of functions
Hom(Xp,Z). Note that as q varies, the operators Lq act on the same space of
functions. Crucially, they commute with each other. Define the submodule
of degree-zero functions

M =

f ∈ Hom(Xp,Z) :
∑

E∈Xp

f(E) = 0

 ,

on which Lq acts as well. Then T is the commutative subring of EndZ(M)
generated by the endomorphisms Lq. It is known to be semisimple and of
rank n − 1 = rkZ M as a Z-module, which means that M is rank 1 (not
necessarily free) as a T-module. The Jacobian Jp,q is then a module for
the Hecke algebra T. In fact, Jp,q is essentially the cokernel M/LqM . More
precisely, for ℓ ∤ n, we have

(1.1) Jp,q[ℓ∞] ≃ Mℓ/LqMℓ,

where Mℓ = M ⊗Z Zℓ (see Proposition 3.3). Given this, one might naively
guess that the groups Jp,q[ℓ∞] should be distributed as a random T-module
of the form Tℓ/aTℓ, where Tℓ = T⊗ZZℓ and a ∈ Tℓ is sampled according to
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Haar measure. However, this turns out to be incorrect, because it ignores
the particular form of the elements Lq.

By definition Lq = q +1−Tq, where Tq ∈ T is the image of the adjacency
matrix of Xp,q, thought of as an element of EndZ Hom(Xp,Z). Thus Lq is
(formally) the determinant of x − 1 acting on the free rank two T-module
T[x]/(x2 − Tqx + q). This rank two module arises naturally in the context
of Hashimoto’s edge-adjacency operator, whose characteristic polynomial
computes the zeta function of the graph. This suggests a different model
for the groups Jp,q[ℓ∞], namely as random cokernels Tℓ/ det(g−1)Tℓ, where
g is sampled from the group

Gℓ := {g ∈ GL2(Tℓ) : det(g) ∈ Z×ℓ },

endowed with its ℓ-adic topology and its probability Haar measure.
Our first result states that for all but finitely many primes ℓ, this is

indeed the correct distribution. For an arbitrary T-module G, define

P(Jp,q[ℓ∞] ≃ G) := lim
X→∞

#{q < X : Jp,q[ℓ∞] ≃ G}
#{q < X}

,

which is the probability that Jp,q[ℓ∞] is isomorphic to G as T-modules (or
Tℓ-modules). Let Disc(T) ∈ Z be the discriminant of the ring T.

Theorem 1.1. Fix a prime ℓ not dividing 6n Disc(T), and let G be a finite
Tℓ-module. Let µ be the Haar probability measure on the group Gℓ. Then

P(Jp,q[ℓ∞] ≃ G) = µ(g ∈ Gℓ : Tℓ/ det(g − 1)Tℓ ≃ G).

Before discussing the proof of Theorem 1.1, we address the natural follow-
up question: what is the distribution in Theorem 1.1, in concrete terms? The
first thing to observe is that the distribution behaves differently depending
on the ℓ-adic valuation of q − 1. Indeed, the cokernel Tℓ/ det(g − 1)Tℓ

measures the ℓ-adic distance from 1 to the two eigenvalues of g. If det g
(which we imagine is q) is itself ℓ-adically close to 1, then both of the
eigenvalues can be close to 1, whereas if det g is not close to 1, then at most
one eigenvalue can be close to 1.

With this phenomenon in mind, we only give an explicit formula for the
distribution as q varies through primes q ̸≡ 1 (mod ℓ); the case of q ≡ 1
(mod ℓ) is more complicated. We may write Tℓ ≃

⊕t
i=1 Oi, where each Oi

is a finite free ring extension of Zℓ of degree di. Since ℓ does not divide
the discriminant of T, each Oi is a discrete valuation ring with maximal
ideal ℓOi and residue field Oi/ℓOi of size ℓdi . The following result computes
the probability P(Jp,q[ℓ∞] ≃ G) in Theorem 1.1, in terms of the integers
d1, . . . , dt. Since Mℓ is a rank one Tℓ-module, this probability is 0 unless G
is isomorphic to Gk :=

⊕t
i=1 Oi/ℓkiOi, for some tuple k = (ki) ∈ Zt

≥0.
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Theorem 1.2. Assume ℓ does not divide 6n Disc(T). Let δij be Kronecker’s
delta function. As q → ∞ varying through primes q ̸≡ 1 (mod ℓ), we have

P(Jp,q[ℓ∞] ≃ Gk) = 1
#Gk

t∏
i=1

(
1 − 1

ℓdi − 1

)δ0ki

.

Note that Gk ≃
⊕t

i=1(Z/ℓkiZ)di , as abstract abelian groups. Thus, one
can easily determine from Theorem 1.2 the explicit distribution of the ab-
stract abelian groups Jp,q[ℓ∞]. To compute Tℓ (which amounts to computing
the integers di), one can use Sage or Magma. See Section 6 for some worked
out examples.

It is interesting to compare the distribution in Theorem 1.2 with a naive
Cohen–Lenstra-type heuristic. As explained in [2], because the Jacobian of
a graph X is naturally endowed with a perfect symmetric bilinear form,
the Cohen–Lenstra heuristic in the setting of sandpile groups predicts that
for each finite abelian group G,

P(J(X) ≃ G) ∝ #{perfect symmetric bilinear G × G → C×}
#G# Aut(G) .

This is what Wood proves in the context of Erdős–Rényi random graphs.
In our case, Jp,q is a rank one T-module, and the number of perfect T-linear
pairings of a rank one T-module is equal to the size of its automorphism
group. Thus the naive Cohen–Lenstra heuristic would predict

P(Jp,q ≃ Gk) ∝ 1
#Gk

,

which also agrees with the naive guess that J(Xp,q)[ℓ∞] is modeled by the
groups Tℓ/aTℓ for a ∈ Tℓ. This is nearly what we find in Theorem 1.2,
except there is an extra factor of 1− 1

ℓdi−1 for each trivial component of Gk
(i.e. for each i such that ki = 0). We see that for Jacobians of supersingular
isogeny graphs, there is a slight and unexpected bias towards T-modules
with non-trivial components.

For any fixed t ≥ 0, one can give explicit formulas for the distribution of
the groups Jp,q as q → ∞ varies through primes such that vℓ(q − 1) = k,
but these formulas seem quite complicated for k > 0. This is somewhat
analogous to the complications that arise in the Cohen–Lenstra-Martinet
heuristics when the ground field contains ℓ-th roots of unity [6].

One statistical quantity which we found accessible without any restric-
tion on q, is the probability that Jp,q[ℓ∞] is cyclic.

Theorem 1.3. Let ℓ be a prime not dividing 6n Disc(T). Recall Tℓ ≃⊕t
i=1 Oi, with each Oi unramified over Zℓ of degree di. Let t1 be the number

of factors with di = 1. Then the probability that Jp,q[ℓ∞] is a cyclic abelian
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group is

ℓ − 2 + t1
ℓ − 1

t∏
i=1

(
1 − 1

ℓdi − 1

)
+
(

ℓ2 + (t1 − 1)ℓ − 1
ℓ3 − 2ℓ2 + 1

)
t∏

i=1

(
1 − ℓdi

ℓ2di − 1

)
.

As a function of ℓ, this expression is 1 − O(ℓ−2), with implied constant
depending only on p.

We can prove similar results for the subgroup Jp,q[L∞], where L is any
squarefree integer coprime to 6n Disc(T). We find that the ℓ-Sylow sub-
groups are independent of each other, as one might expect (see Theo-
rem 5.13). Taking L → ∞, we deduce the following upper bound on the
proportion of primes p for which Jp,q is cyclic.

Theorem 1.4. Let S =
∏

ℓ|6n Disc(T) ℓ and let Jp,q[1/S] be the prime-to-S
part of Jp,q. Then as q → ∞, the probability that Jp,q[1/S] is cyclic is at
most

∏
ℓ/∈S E(ℓ) > 0, where the Euler factor E(ℓ) equals

ℓ − 2 + t1(ℓ)
ℓ − 1

t(ℓ)∏
i=1

(
1 − 1

ℓdi − 1

)
+
(

ℓ2 + (t1(ℓ) − 1)ℓ − 1
ℓ3 − 2ℓ2 + 1

) t(ℓ)∏
i=1

(
1 − ℓdi

ℓ2di − 1

)
,

t(ℓ) is the number of factors in Tℓ, and where t1(ℓ) is the number of degree
one factors of Tℓ. In particular, the Euler product

∏
ℓ/∈S E(ℓ) is also an

upper bound for the probability that Jp,q is cyclic.

We conjecture that this upper bound is also the correct lower bound,
which would imply that a positive proportion of the groups Jp,q[1/S] are
cyclic.

1.2. Proofs. The first step in the proof of Theorem 1.1 is to identify a
rank two Tℓ-module Vℓ, which does not depend on q, and operators gq ∈
EndTℓ

(Vℓ) such that Jp,q[ℓ∞] ≃ Tℓ/ det(gq − 1)Tℓ.
To find Vℓ, we use the deep connection between supersingular isogeny

graphs and Galois representations that are familiar in number theory. In-
deed, the algebra T is also known to act by correspondences on the modular
curve X0(p); see e.g. [5]. Moreover, there is a (T ⊗ Q)-linear isomorphism
between M ⊗Q and the space S2(Γ0(p),Q) of weight two cusp forms of level
Γ0(p), which may be viewed as the space of regular differentials on X0(p).
This is proved either by using the Jacquet–Langlands correspondence or
via theta series as in [5]. Let J0(p) be the Jacobian of X0(p), an abelian
variety of dimension n − 1. Then the Tate module

Vℓ = lim
←

J0(p)[ℓk]

is free of rank two over Tℓ and admits an action ρℓ : GQ → AutTℓ
(Vℓ) by

the absolute Galois group GQ = Gal(Q/Q). In conjunction with (1.1) and
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the T-module isomorphism M ⊗ Q ≃ S2(Γ0(p),Q), the Eichler–Shimura
relation [15] implies that for ℓ ∤ pN , we have
(1.2) Jp,q[ℓ∞] ≃ Tℓ/ det(ρℓ(Frobq) − 1)Tℓ,

where Frobq is a choice of Frobenius automorphism at p (see Proposi-
tion 3.6). Thus Vℓ is the sought after Tℓ-module. The elements ρℓ(Frobq) lie
in Gℓ because the determinant of ρℓ is the cyclotomic character, and hence
det(ρℓ(Frobq)) = q. As an aside, it was observed in [7, §4.3] that for ℓ ∤ n,
we have

#Jp,q[ℓ∞] = #J0(p)(Fq)[ℓ∞],
which is a weaker version of (1.2). In fact, one deduces from (1.2) that the
groups Jp,q[ℓ∞] and J0(p)(Fp)[ℓ∞] are not isomorphic in general, despite
having the same cardinality.

To prove that the Frobenius cokernels µ-equidistribute, we need two
more ingredients. The first is the fact that ρℓ maps GQ surjectively onto
Gℓ. General results for Galois representation attached to modular curves
imply that this surjectivity holds for all but finitely many ℓ. To get precise
control of the allowed values of ℓ, we use Ribet’s strong result in the case
where the level p is prime [12], which proves surjectivity for all ℓ ∤ n Disc(T).
The second ingredient in our proof is Cebotarev’s density theorem.

The proofs of Theorems 1.2–1.4 amount to some rather elaborate ℓ-adic
computations which seem to magically simplify at the end. The core of the
computation involves determining the number matrices in GL2(O/ℓi) hav-
ing eigenvalue 1, which we expect will have other applications. It would be
interesting to compute the full distribution including primes q ≡ 1 (mod ℓ),
but our approach gives unruly intermediate formulas in that case.

1.3. Remarks and further directions. For ℓ | n Disc(T), the distribu-
tion of the groups Jp,q[ℓ∞] may very well differ from those in Theorems 1.1
and 1.2. For example, if there is a mod ℓ congruence between two newforms
of level p, then ℓ will divide Disc(T) and the distribution will not agree
with Theorem 1.2. In that case, the distribution could conceivably agree
with the abstract distribution in Theorem 1.1, but Ribet’s results no longer
apply, so we are not sure.

It is natural to wonder about the distribution of the groups Jp,q[ℓ∞]
with q fixed and p → ∞. The authors are not sure what the distribution
should be in this case. What is needed is an ℓ-adic version of the results of
Serre [14] and Conrey–Duke–Farmer [4], but controlling the ℓ-adic norms
of the terms in the trace formula seems difficult.

If C/Qp is a semistable curve, then the Jacobian of the component graph
of a minimal regular model of C over Zp is isomorphic to the component
group of the special fiber of the Néron model of its Jacobian variety. Let
Xpq/Qq be the quaternionic Shimura curve over Qq parameterizing abelian
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surfaces admitting a subring of endomorphisms isomorphic to the quater-
nion order of discriminant pq. Ribet has shown that the component graph
X p,q of Xpq/Qq is a double cover of the graph Xp,q; see [11, 4.4] and [1, §4].
It follows that Jp,q is a quotient of J(X p,q), and hence our results shed light
on the group structure of these component groups. It would be interesting
to determine the exact structure of the groups J(X p,q) via a closer study
of this double cover.

2. Jacobians of graphs

Let X be a finite undirected graph with vertex set V (X) and edge set
E(X). Self-loops and multi-edges are allowed. The Jacobian of X is defined
in terms of the group of divisors on G

Div(X) =

 ∑
v∈V (X)

avv : av ∈ Z

 ,

which is the free abelian group on the set V (X). We may of course identify
Div(X) with the group Hom(V (X),Z) from the introduction.

The degree of a divisor
∑

avv is the integer
∑

av. We write Div0(X) ⊂
Div(X) for the subgroup of degree 0 divisors. Each function f : V (X) → Z
determines a principal divisor

div(f) =
∑

v

∑
e=vw∈E(X)

(f(v) − f(w))v.

Two divisors D, D′ ∈ Div(X) are linearly equivalent if their difference is
principal, or, in other words, if D − D′ = div(f) for some function f .
Principal divisors have degree 0, so equivalent divisors have the same degree.

Definition 2.1. The Jacobian J(X) is the group of linear equivalence
classes in Div0(X), i.e. the quotient of Div0(X) by the subgroup of principal
divisors.

Remark 2.2. The group of all functions f : V (X) → Z is generated by the
indicator functions δv(w) = δvw, for each v ∈ V (X). The linear equivalence
relation is therefore generated by the relations

∑
e=vw(v−w), one for each v.

3. Jacobians of supersingular isogeny graphs

Recall that p ≡ 1 (mod 12) is a prime and Xp is the set of supersingular
elliptic curves over Fp. Let q be any prime different from p, and let X = Xp,q

be the supersingular q-isogeny graph with vertex set Xp. Then G is a (q+1)-
regular graph on n := (p − 1)/12 vertices.

The Z-module Div(X) is free of rank n, with basis given by the n super-
singular elliptic curves E ∈ Xp. The Hecke operator Tq : Div(X) → Div(X)
sends E to

∑
E′∼E E′, where the sum is over every edge E′ ∼ E in Xp,q.
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Example 3.1. When p = 37, there are three supersingular elliptic curves,
with j-invariants 8 and the roots α and α of x2 −6x−6 ∈ F37[x]. For q = 2,
we compute in Sage that

• T2E8 = E8 + Eα + Eα,
• T2Eα = E8 + 0Eα + 2Eα, and
• T2Eα = E8 + 2Eα + 0Eα.

The Hecke operator T2 is degree 3, since the graph X37,2 is 3-regular.

In general, Tq sends divisors of degree n to divisors of degree (q + 1)n. In
particular, it preserves the subgroup Div0(X). The latter sits in an exact
sequence

(3.1) 0 → Div0(X) −→ Div(X) deg−→ Z → 0,

of abelian groups. For varying primes q, the operators Tq ∈ EndZ Div(X)
commute with each other. They therefore generate a commutative algebra
T̃, called the Hecke algebra, which is semisimple and free of rank n as a
Z-module [5]. Then (3.1) is an exact sequence of T̃-modules, with Tq acting
on Z by multiplication by q + 1. Let T be the subalgebra of EndZ Div0(X)
generated by the action of the Tq. Then T is a quotient of T̃ and has rank
n − 1.

Lemma 3.2. There is an isomorphism of T-modules Jp,q ≃ Div0(X)/(q +
1 − Tq) Div(X).

Proof. From the definitions, the subgroup of principal divisors is precisely
(q + 1 − Tq) Div(X). □

The degree map Div(X) → Z does not quite admit a T̃-module section,
but there is a map Z → Div(X) sending 1 to ∆ :=

∑
E∈Xp

E. The subgroup
Div0(X) ⊕ Z∆ has index n inside Div(X), with cokernel isomorphic to
Z/nZ.

Proposition 3.3. We have #Jp,q = 1
n det(q + 1 − Tq| Div0(X)). More

precisely, there is an isomorphism of T-modules
Jp,q ≃ coker(q + 1 − Tq| Div0(X))/⟨(q + 1 − Tq)(E)⟩,

for any choice of E ∈ Xp.

Proof. This follows from applying the snake lemma to the diagram

0 Div0(X) ⊕ Z∆ Div(X) Z/nZ 0

0 Div0(X) Div0(X) 0 0

whose vertical maps are q + 1 − Tq. □
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Since T and Div0(X) are free of rank n − 1 as Z-modules, the group
Div0(X) is a torsion-free rank one T-module, though not necessarily free.
For any prime ℓ, let Tℓ = T⊗ZZℓ and Div0(X)ℓ = Div0(X) ⊗ZZℓ. The Qℓ-
algebra Tℓ⊗Q = T⊗ZQℓ is a finite product

⊕t
i=1 Ki of finite field extensions

of Qℓ. Assume from now on that ℓ does not divide the discriminant of T.
Then each Ki is unramified of degree di ≥ 1 over Qℓ, and

Tℓ ≃
t⊕

i=1
Oi,

where Oi is the integral closure of Zℓ in Ki.

Proposition 3.4. If ℓ does not divide n Disc(T), then

Jp,q[ℓ∞] ≃
t⊕

i=1
Oi/(q + 1 − Tq)Oi,

where we view Tq in Oi via the projection Tℓ → Oi.

Proof. Since Tℓ is a product of discrete valuation rings, any rank one
torsion-free module is free. After identifying Div0(X)ℓ with Tℓ, the action
of Tq is by left-multiplication. Since Tq acts Tℓ-linearly, it sends Oi to Oi

and the result follows from Proposition 3.3 (since we also assume ℓ ∤ n). □

As explained in the introduction, we can realize the group Jp,q[ℓ∞] as
Tℓ/ det(gq − 1)Tℓ for some Tℓ-linear map gq on a rank two Tℓ-module Vℓ,q.
However, the module we constructed was somewhat contrived, and in par-
ticular, depended on q. To prove Theorem 1.1 we will find a single rank
two Tℓ-model Vℓ and an operator gq on it (for each prime q) with the same
properties.

We must first recall the connection to modular forms. It is known that
the algebra T is isomorphic to the Hecke algebra acting on the space of
weight two cusp forms S2(Γ0(p),Z) with integer coefficients [5, Thm. 3.1].
It follows that there is a bijection between the maximal ideals λi of Tℓ and
pairs (f, λ), where f =

∑
an(f)qn runs through a set of representatives for

the Gal(Q/Q)-orbits of newforms in S2(Γ0(p),Q), and λ runs through the
prime ideals in Of above ℓ, where Of is the ring of integers of the number
field generated by the coefficients an(f). Since we assume ℓ ∤ Disc(T), the
ring Oi is isomorphic to the completion Of,λ of Of at λ. Thus

Tℓ ≃
⊕
(f,λ)

Of,λ,

where the sum is understood to be over the pairs (f, λ) as before.
The following description of Jp,q[ℓ∞] in terms of modular forms gives a

convenient way to compute this group using any software which computes
newforms and their Fourier coefficients.
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Proposition 3.5. If ℓ does not divide n Disc(T), then

Jp,q[ℓ∞] ≃
⊕
(f,λ)

Of,λ/(q + 1 − aq(f))Of,λ,

where we view aq(f) in Of,λ via the projection Tℓ → Of,λ.

Proof. We use the fact that Div0(X)ℓ is isomorphic as Tℓ-module to
S2(Γ0,Zℓ) [5]. In fact, they are both free of rank 1, under the assumptions
on ℓ. Multiplication by Tq on Of,λ is given by multiplication by ap(fi), since
f is a newform, and so the same must be true for the action of Tq on Oi.
Thus, the result follows from Proposition 3.4. □

Let X0(p) be the modular curve parameterizing elliptic curves with a
cyclic subgroup of order p. This is a smooth projective algebraic curve over
Q. Let J0(p) be its Jacobian, an abelian variety over Q of dimension equal
to the genus of X0(p), which is g = n−1. For each k, let J0(p)[ℓk] denote the
group of ℓk-torsion points in J0(p), which is a finite GQ-module, isomorphic
as a group to (Z/ℓkZ)2g. These GQ-modules form an inverse system under
the multiplication-by-ℓ maps. Let Vℓ = limk J0(p)[ℓk] be the inverse limit.3
Then Vℓ is free of rank 2g over Zℓ and carries a Zℓ-linear action of GQ.

The Tate module Vℓ has even more structure. The Hecke algebra T acts
by correspondences on the curve X0(p), and hence acts by endomorphisms
on J0(p). It is known that T = End(J0(p)), since p is prime [8], but we will
only use the containment T ⊂ End(J0(p)). It follows that Vℓ is a rank two
Tℓ-module. If ℓ ∤ Disc(T) or if ℓ > 2, then Mazur showed that Vℓ is moreover
a free Tℓ-module [8, II.15-17]. Thus, the GQ-action can be thought of as a
representation

ρℓ : GQ −→ AutTℓ
(Vℓ)

or
ρℓ : GQ −→ GL2(Tℓ),

if either ℓ ∤ Disc(T) or ℓ > 2. The Galois representation Vℓ is unramified
at all primes p ∤ Nℓ, so that the action of an arithmetic Frobenius element
Frobq ∈ GQ is well-defined.

Proposition 3.6. For ℓ ∤ n · Disc(T)p, there is an isomorphism of Tℓ-
modules

Jp,q[ℓ∞] ≃ Tℓ/ det(ρℓ(Frobq) − 1)Tℓ

where Frobq ∈ GQ is a Frobenius element for q.

Proof. If λ is a maximal ideal in T and k ≥ 1, let J0(p)[λk] denote the
GQ-module of points in J0(p)(Q) killed by all elements in the ideal λk.

3In the literature, Vℓ is more often written as Tℓ or TℓJ0(p), but we have already used up this
notation.
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Define Vλ = limk J0(p)[λk], the λ-adic Tate module of J0(p). Then we have
a decomposition of GQ-representations:

Vℓ =
⊕
(f,λ)

Vλ,

where (f, λ) varies over orbits of newforms f and prime ideals λ in Of lying
above ℓ, as before. It is known that Vλ is free of rank two over Oi ≃ Of,λ,
and the determinant of Vλ is the cyclotomic character χ. By the Eichler–
Shimura relation [15], the action of a Frobenius element Frobq ∈ GQ on Vλ

has trace equal to Tq ∈ Oi. Now, Tq acts by aq(f) on Vλ and χ(Frobq) = q.
Thus, the characteristic polynomial of Frobq on the rank two Oi-module
Vλ is x2 − aq(f)x + q. We find that det(ρℓ(Frobq) − 1) = q + 1 − aq(f). The
result now follows from Proposition 3.5 and summing over all (f, λ). □

It is interesting to compare Proposition 3.6 with the following result of
Hashimoto [7, 4.3].

Theorem 3.7. Let X0(p) be the modular curve of level Γ0(p) and let J0(p)
be its Jacobian. Then

n · #Jp,q = #J0(p)(Fq)

Let us sketch an alternative proof of this theorem. If A is an abelian
variety over Fq, then #A(Fq) = det(Fr −1) where Fr is the action of the
geometric Frobenius on the ℓ-adic Tate-module of A [10]. Moreover, if A is
the reduction of an abelian variety Ã over Q, then this action agrees with
the action of Frobq on the ℓ-adic Tate module of Ã. Thus, the theorem
follows from Propositions 3.3 and 3.6, and some additional care to treat
the primes ℓ | n Disc(T).

Note that J0(p)(Fq) always contains a point of order n = (p − 1)/12,
namely the reduction D of the cuspidal divisor (0) − (∞) on the modular
curve. Theorem 3.7 says that the finite abelian groups Jp,q and
J0(p)(Fq)/⟨D⟩ have the same cardinality. However, these two groups are
not isomorphic in general as the former is a rank 1 T-module whereas the
latter is not. In any case, note that Xp,q describes q-isogenies of (super-
singular) elliptic curves in characteristic p, whereas X0(p)(Fq) describes
p-isogenies of elliptic curves in characteristic q. Thus, Hashimoto’s formula
can be viewed as a kind of reciprocity law between their Jacobians.

4. Proof of Theorem 1.1

Let Lq = q + 1 − Tq ∈ Tℓ be the Laplacian operator for the graph Xp,q.
As in the proof of Proposition 3.6, we have

Lq = det(ρℓ(Frobq) − 1).
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Recall that Tℓ ≃
⊕t

i=1 Oi, where each Oi is a discrete valuation ring. Let

v : (Tℓ ⊗ Q)× →
t⊕

i=1
Z

be the homomorphism which is the discrete valuation on each factor. By
Proposition 3.6, the group Jp,q[ℓ∞] depends only on the tuple v(Lq). Indeed,

Jp,q[ℓ∞] ≃
t⊕

i=1
Oi/ℓkiOi,

where v(Lq) = (ki)t
i=1.

Now let G be the finite Tℓ-module in the Theorem. Recall that

P(Jp,q[ℓ∞] ≃ G) = lim
X→∞

#{p < X : Jp,q[ℓ∞] ≃ G}
#{p < X}

,

and P(Jp,q[ℓ∞] ≃ G) = 0 unless G =
⊕t

i=1 Oi/ℓkiOi, for some k = (ki) ∈
Zt
≥0. So we assume G = Gk, for some such k.
Consider the ideal Ik = {a ∈ Tℓ : v(a) ≥ k} in Tℓ. By Proposition 3.6,

there is an isomorphism Jp,q[ℓ∞] ≃ G if and only if the image of ρℓ(Frobq)
in GL2(Tℓ/Ik) has 1 as an eigenvalue and the image of ρℓ(Frobq) in
GL2(Tℓ/Iw) does not have 1 as an eigenvalue for any w > k. In partic-
ular, we can detect whether Jp,q[ℓ∞] ≃ G from the image of ρℓ(Frobq) in
GL2(Tℓ/Ik+1), where k + 1 = (ki + 1)t

i=1.
A result of Ribet [12] states that if ℓ ∤ 6n Disc(T), then the image of the

Galois representation ρℓ : GQ → GL2(Tℓ) is precisely the group
Gℓ := {g ∈ GL2(Tℓ) : det(g) ∈ Z×ℓ }

from the introduction. Hence the image of ρℓ(GQ) in GL2(Tℓ/Ik+1) is
Gℓ(k + 1) := {g ∈ GL2(Tℓ/Ik+1) : det(g) ∈ Z×ℓ (k + 1)},

where Z×ℓ (k + 1) is the image of Z×ℓ → T×ℓ → (Tℓ/Ik+1)×. Let L be
the finite Galois extension of Q which is the fixed field of the kernel of
ρℓ : GQ → GL2(Tℓ/Ik+1). Thus Gal(L/Q) ≃ Gℓ(k + 1). Applying the Ce-
botarev density theorem to L/Q, we find that P(Jp,q[ℓ∞] ≃ G) is equal to
the proportion of elements of the finite group Gℓ(k + 1) whose reduction
in GL2(Tℓ/Ik) has 1 as an eigenvalue, but whose reduction in GL2(Tℓ/Iw)
does not have 1 as an eigenvalue, for all tuples k < w < k+1. By definition
of the Haar measure on Gℓ, this is equal to the probability that a random
g ∈ Gℓ satisfies Tℓ/ det(g − 1)Tℓ ≃ G, as desired.

5. Computing the distribution

In this section we prove Theorems 1.2, 1.3, and 1.4. Fix a prime ℓ and
integer d ≥ 1, and let λ = ℓd. Let O be the (unique) degree d unramified
cyclic extension of Zℓ. Thus, O is a discrete valuation ring containing Zℓ,
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with maximal ideal m = ℓO and with residue field O/m isomorphic to the
finite field Fλ. The maximal ideal of Zℓ is ℓZℓ, so that its residue field
Zℓ/ℓZℓ ≃ Fℓ is naturally a subfield of O/m ≃ Fλ. For any k ≥ 1, we have
an inclusion of rings Zℓ/ℓk ↪→ O/mk. For D ∈ O/mk, define

N(k, D) = #{g ∈ GL2(O/mk) : det(g − 1) = 0 and det(g) = D}.

Proposition 5.1. Fix k ≥ 1 and D ∈ (Zℓ/ℓkZℓ)×. If v(1 − D) = 0, then

N(k, D) = λ2k−1(λ + 1).

Proof. For this proof, we abuse the usual notation slightly and consider the
“reduced valuation”

v : O/mk → {0, 1, . . . , k}

defined by the formula π−1((a)) = mv(a), where π : O → O/mk is the
reduction map and (a) is the ideal generated by a.

We wish to compute the number

N(k, D) = #
{(

a b
c d

)
∈ GL2(O/mk) : ad − bc = D and 1 − a − d + D = 0

}
.

Now, if a is fixed, then d is determined by the formula d = 1 − a + D. Note
that ad − D = (1 − a)(a − D). Thus

N(k, D) =
∑

a∈O/mk

∑
b∈O/mk

vbf(b)≤v((1−a)(a−D))

∑
c∈O/mk

bc=(1−a)(a−D)

1

Lemma 5.2. If b, M ∈ O/mk satisfy v(b) ≤ v(M) then the number of
elements c ∈ O/mk such that bc = M is λv(b).

Proof. If M = 0, then c satisfies bc = 0 if and only if v(c) ≥ k − v(b), and
there are λk−(k−v(b)) = λv(b) such elements. If M ̸= 0, then c must have
valuation v(M) − v(b), and there are λk−v(M)+v(b)−1(λ − 1) such elements.
Multiplying such elements by b, we are equally likely to obtain any element
of valuation v(M). Thus, after dividing by the λk−v(M)−1(λ − 1) elements
of valuation v(M), we find that λv(b) elements c satisfy bc = M. □

By the Lemma, we have

(5.1) N(k, D) =
∑

a∈O/mk

∑
b∈O/mk

vbf(b)≤v((1−a)(a−D))

λv(b).

Since v(1 − D) = 0, we can have v(1 − a) > 0 and we can also have
v(a − D) > 0 but never both. Moreover, (1 − a)(a − D) = 0 if and only if
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a = 1 or a = D. Thus, we compute

N(k, D)

=
k∑

j=1
#{a : v(1 − a) = j}

j∑
i=0

#{b : v(b) = i}λi

+
k∑

j=1
#{a : v(a − D) = j}

j∑
i=0

#{b : v(b) = i}λi + λ2k−2(λ − 2)(λ − 1).

Lemma 5.3. We have

#{b : v(b) = i}λi =
{

λk−1(λ − 1) if i < k

λk if i = k.

Proof. Indeed, the number of b ∈ O/mk of valuation i is λk−1−i(λ − 1) if
i < k and 1 if i = k. □

Separating the contributions from a = 1 and a = D, we have:

N(k, D) = 2(k + 1)λk − 2kλk−1 + λ2k−2(λ − 2)(λ − 1) + A

where A is equal to

k−1∑
j=1

#{a : v(1 − a) = j}(j + 1)λk−1(λ − 1)

+
k−1∑
j=1

#{a : v(a − D) = j}(j + 1)λk−1(λ − 1).

Using Lemma 5.3, we compute

A = 2λ2k−1(λ − 1)2
k∑

j=2

j

λj
.

Combining the formula
n∑

i=0
iai = a − an+1

(1 − a)2 − nan+1

1 − a
,

we eventually find that

A = 2λ2k − 2λk − 2(λ − 1)kλk−1 − 2(λ − 1)2λ2k−2.
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Thus,
N(k, D) = 2(k + 1)λk − 2kλk−1 + λ2k−2(λ − 2)(λ − 1) + 2λ2k

− 2λk − 2(λ − 1)kλk−1 − 2(λ − 1)2λ2k−2

= λ2k + λ2k−1

= λ2k−1(λ + 1),
as desired. □

For any D ∈ O/mk+1, define the set

M(k, D) = {g ∈ GL2(O/mk+1) : v(det(g − 1)) = k and det(g) = D}
and let M(k, D) = #M(k, D).

Proposition 5.4. Fix k ≥ 0 and D ∈ (O/mk+1)×. If v(1 − D) = 0, then

M(k, D) =
{

λ(λ − 2)(λ + 1) if k = 0
λ2k+1(λ − 1)(λ + 1) if k > 0

.

Proof. First assume k = 0. Then M(0, D) is the number of g ∈ GL2(Fλ)
of determinant D such that det(g − 1) ̸= 0. Now, the number of g with
determinant equal to D is

# GL2(Fλ)
λ − 1 = (λ + 1)λ(λ − 1).

Thus, M(0, D) = (λ + 1)λ(λ − 1) − N(1, D), and by Proposition 5.1, this is
(λ − 1)λ(λ + 1) − λ(λ + 1) = λ(λ + 1)(λ − 2).

Now assume k ≥ 1. Let π : GL2(O/mk+1) → GL2(O/mk). Recall that
N(k, π(D)) is the cardinality of the set

N (k, π(D)) = {h ∈ GL2(O/mk) : det(h) = π(D) and det(h − 1) = 0}.

Then π sends M(k, D) to N (k, π(D)). Conversely, given h ∈ N (k, π(D)),
there is at least one g ∈ π−1(h) with det(g) = D. Any other element of
π−1(h) has the form g + ℓkM for some matrix M . The determinant of
g + ℓkM is equal to

(a + ℓkm1)(d + ℓkm4) − (b + ℓkm2)(c + ℓkm3)
= det(g) + ℓk(am4 + dm1 − cm2 − bm3)

and hence equals D = det(g) if and only if M lies in the kernel of a certain
non-zero linear functional Mat2(Fλ) → Fλ. There are therefore λ3 pre-
images g′ ∈ π−1(h) with det(g′) = D. Not all of them satisfy v(det(g−1)) =
k, but we have

M(k, D) = λ3N(k, π(D)) − N(k + 1, D).
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By Proposition 5.1, we have

M(k, D) = λ2k+2(λ + 1) − λ2(k+1)−1(λ + 1)
= λ2k+1(λ(λ + 1) − λ − 1)
= λ2k+1(λ − 1)(λ + 1),

as claimed. □

Now let k = (ki) ∈ Zt
≥0. Let Tℓ =

⊕t
i=1 Oi, where each Oi is a finite

unramified extension of Zℓ of degree di ≥ 1. The residue field Oi/mi of
Oi is isomorphic to Fλi

, where λi = ℓdi . Recall that k determines a finite
ℓ-primary Tℓ-module Gk =

⊕t
i=1 Oi/ℓki . If g ∈ Gℓ, then Tℓ/ det(g −1)Tℓ ≃

Gk if and only if v(det(g − 1)) = k, where here v : Tℓ → Zt is the combined
valuation from Section 4.

Recall the ideals Ik+1 and the sets Z×ℓ (k+1). Having fixed k for the time
being, we will abuse notation and write v : Tℓ/Ik+1 →

∏t
i=1{0, 1, . . . , ki+1}

for the “combined reduced valuation”. Let k = maxi ki, and observe that
we may view Zℓ/ℓk+1Zℓ as a subring of Tℓ/Ik+1. Define Z♢ℓ (k + 1) to be
the subset of elements D of this subring such that v(D(1 − D)) = 0. Now
define

M(k) = #
{

g ∈ GL2(Tℓ/Ik+1) : det(g) ∈Z♢ℓ (k +1) and v(det(g −1)) = k
}

.

Proposition 5.5. Let δij ∈ {0, 1} be Kronecker’s delta. Then

M(k) = ℓk(ℓ − 2)
t∏

i=1
λ2ki+1

i (λi − 1 − δ0ki
)(λi + 1).

Proof. Recall that we view Zℓ/ℓk+1Zℓ as a subring of Tℓ/Ik+1 in the natural
way. We have

M(k) =
∑

D∈Z♢
ℓ

(k+1)

M(k, D)

where

M(k, D) = #{g ∈ GL2(Tℓ/Ik+1) : det(g) = D and v(det(g − 1)) = k}.

On the other hand,

M(k, D) =
t∏

i=1
M(ki, Di),

where Di is the image of D in Zℓ/ℓki+1 and

M(ki, Di) = #
{

g ∈ GL2(Oi/m
ki+1
i ) : det(g) = Di and vi(det(g − 1)) = ki

}
.
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By Proposition 5.4, we have

M(k, D) =
t∏

i=1
λ2ki+1

i (λi − 1 − δ0ki
)(λi + 1),

where λi = #Oi/mi. Thus,

M(k) =
∑

D∈Z♢
ℓ

(k+1)

M(k, D)

= ℓk(ℓ − 2)
t∏

i=1
λ2ki+1

i (λi − 1 − δ0ki
)(λi + 1).

as claimed. □

Let G′ℓ = {g ∈ Gℓ : det(g) − 1 ∈ Z×ℓ }.

Theorem 5.6. Fix k ∈ Zt
≥0 and let δi = 1 if ki = 0 and δi = 0 if ki > 0.

Then the proportion of g ∈ G′ℓ such that Tℓ/ det(g − 1)Tℓ ≃ Gk is
t∏

i=1
λ−ki

i

(
1 − 1

λi − 1

)δi

= 1
#Gk

t∏
i=1

(
1 − 1

λi − 1

)δi

.

Remark 5.7. The distribution above is a product of t independent prob-
ability distributions, since

∞∑
k=0

λ−k
(

1 − 1
λ − 1

)δ0k

= 1 − 1
λ − 1 + 1

1 − 1/λ
− 1 = 1.

Proof. Define G′ℓ(k+1) := {g ∈ GL2(Tℓ/Ik+1) : det(g) ∈ Z♢ℓ (k+1)}. Then

#G′ℓ(k + 1) = #Z♢ℓ (k + 1) · # ker
(
GL2(Tℓ/Ik+1) → (Tℓ/Ik+1)×

)
= ℓk(ℓ − 2)

t∏
i=1

# ker
(
GL2(Oi/m

ki+1
i ) → (Oi/m

ki+1
i )×

)

= ℓk(ℓ − 2)
t∏

i=1
λ4ki

i

(λ2
i − 1)(λ2

i − λi)
λki

i (λi − 1)

= ℓk(ℓ − 2)
t∏

i=1
λ3ki+1

i (λ2
i − 1).

Thus, by Proposition 5.5, the proportion of g ∈ G′ℓ giving rise to Gk is
t∏

i=1

λ2ki+1
i (λi − 1 − δ0ki

)
λ3ki+1

i (λi − 1)
=

t∏
i=1

λ−ki
i

(
1 − 1

λi − 1

)δi

. □

Proof of Theorem 1.2. The result follows from combining Theorem 5.6 with
(the proof of) Theorem 1.1. Indeed, restricting to primes q ̸≡ 1 (mod ℓ)
amounts to restricting to the subgroup G′ℓ ⊂ Gℓ. □



768 Nathanaël Munier, Ari Shnidman

Now we apply Theorem 1.2 to the understand how often Jp,q[ℓ] is cyclic.
Fix a prime ℓ ∤ 6n Disc(T).

Corollary 5.8. As q → ∞ through primes q ̸≡ 1 (mod ℓ), we have

P(Jp,q[ℓ∞] = 0) =
t∏

i=1

(
1 − 1

λi − 1

)
.

Corollary 5.9. As q → ∞ through primes q ̸≡ 1 (mod ℓ), the probability
that Jp,q[ℓ∞] is a cyclic abelian group is(

1 + t1
ℓ − 2

) t∏
i=1

(
1 − 1

λi − 1

)
,

where t1 is the number of Oi which are isomorphic to Zℓ (i.e. with di = 1).

Proof. The Oi-component of Jp,q[ℓ∞] can only be non-trivial and cyclic if
di = 1, or in other words λi = ℓ. Indeed, Oi/m ≃ Fλi

is isomorphic to
(Z/ℓ)di as an abelian group. Let us index the factors Oi so that di = 1 for
1 ≤ i ≤ t1. Then the probability that Jp,q[ℓ∞] is cyclic is

t∏
i=1

λi − 2
λi − 1 +

t1∑
i=1

1
ℓ − 1

t∏
j ̸=i

λj − 2
λj − 1

= κ +
t1∑

i=1
κ · ℓ − 1

ℓ − 2 · 1
ℓ − 1 = κ + t1

ℓ − 2κ =
(

1 + t1
ℓ − 2

)
κ,

where κ =
∏t

i=1
λi−2
λi−1 . □

What about analogues of the results for q ≡ 1 (mod ℓ)? In principle
one can write a closed formula for the distribution of Jp,q[ℓ∞] (as in Theo-
rem 5.6) as q → ∞ varies through primes such that vℓ(p − 1) = k > 0, for
any fixed k, but the formulas seemed very complicated to us. For our pur-
poses, we will be happy to simply give analogues of Corollaries 5.8 and 5.9.

Proposition 5.10. As q → ∞ through q ≡ 1 (mod ℓ), the probability that
Jp,q[ℓ∞] = 0 is

t∏
i=1

(
1 − λi

λ2
i − 1

)
.

Proof. First let O = Oi and λ = λi. Then the number of M ∈ GL2(O/m)
with det(M) = 1 and det(M −1) = 0 is (λ−1)2 +(λ−1)+λ = λ2, by (5.1).
The total number of M with determinant 1 is

# GL2(Fλ)
#F×λ

= (λ2 − 1)(λ2 − λ)
λ − 1 = λ(λ − 1)(λ + 1)
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Thus the probability that such an M has det(M − 1) ̸= 0 is 1 − λ
λ2−1 . The

proposition now follows by taking the product over all i. □

Proposition 5.11. As q → ∞ through q ≡ 1 (mod ℓ), the probability that
Jp,q[ℓ∞] is cyclic is (

1 + t1ℓ

ℓ2 − ℓ − 1

) t∏
i=1

(
1 − λi

λ2
i − 1

)
Proof. The probability is

t∏
i=1

λ2
i − λi − 1
λ2

i − 1
+

t1∑
i=1

ℓ

ℓ2 − 1

t∏
j ̸=i

λ2
j − λj − 1
λ2

j − 1

= κ +
t1∑

i=1
κ · ℓ2 − 1

ℓ2 − ℓ − 1 · ℓ

ℓ2 − 1 = κ + t1ℓ

ℓ2 − ℓ − 1κ =
(

1 + t1ℓ

ℓ2 − ℓ − 1

)
κ,

where κ =
∏t

i=1
λ2

i−λi−1
λ2

i−1 . □

Putting together Corollary 5.9 and Proposition 5.11, we obtain the fol-
lowing, which is Theorem 1.3.

Corollary 5.12. As q → ∞, the probability that Jp,q[ℓ∞] is cyclic is

ℓ − 2 + t1
ℓ − 1

t∏
i=1

(
1 − 1

λi − 1

)
+
(

ℓ2 + (t1 − 1)ℓ − 1
ℓ3 − 2ℓ2 + 1

)
t∏

i=1

(
1 − λi

λ2
i − 1

)
.

As ℓ → ∞, this is 1 − O(ℓ−2), with the implied constant depending only
on p.

Proof. Call the desired probability P . Then by Dirichlet’s theorem on
primes in arithmetic progressions, we have P = (1 − 1

ℓ−1)PA + 1
ℓ−1PB,

where PA and PB are the probabilities computed in Corollary 5.9 and 5.11,
respectively. This gives the claimed formula. To estimate the first term, we
may ignore the factors with λi = ℓdi > ℓ. Taking x = ℓ − 1, we compute

PA ≈
(

1 + t1
x − 1

)(
1 − 1

x

)t1

= 1 + O(x−2) = 1 + O(ℓ−2).

Thus

P =
(

1 − 1
ℓ − 1

)
+ O(ℓ−2) + 1

ℓ − 1
(
1 + O(ℓ−1)

)
= 1 + O(ℓ−2),

as desired. □

Since
∏

ℓ(1 − O(ℓ−2)) > 0, this gives an explicit positive upper bound on
the proportion of primes p such that Jp,q is cyclic. It also suggests that a
positive proportion of the groups Jp,q are cyclic, but we cannot deduce this
from our results. We at least have the following, which is Theorem 1.4.
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Theorem 5.13. Let S be the set of primes dividing 6n Disc(T). The prob-
ability that

⊕
ℓ/∈S Jp,q[ℓ∞] is cyclic is at most

∏
ℓ/∈S

ℓ−2+ t1(ℓ)
ℓ − 1

t(ℓ)∏
i=1

(
1− 1

λi −1

)
+
(

ℓ2 +(t1(ℓ)−1)ℓ−1
ℓ3 − 2ℓ2 + 1

)t(ℓ)∏
i=1

(
1− λi

λ2
i −1

),

where t(ℓ) is the number of factors in Tℓ and t1(ℓ) is the number of degree
one factors of Tℓ. In particular, the above Euler product is also an upper
bound on the probability that Jp,q is cyclic.

Proof. Technically speaking, this does not follow from the previous results.
However, Ribet’s results apply not just to a single prime, but to any set
of primes not contained in S [12]. This shows that for any finite set of
primes ℓ1, . . . , ℓm not in S, the distributions of the groups Jp,q[ℓ∞i ] are
independent of each other. Taking a limit as m → ∞ leads to the desired
upper bound. □

In fact, Ribet’s result applies even to infinite sets of primes not contained
in S. This suggests that with some extra work one might be able to prove
a uniformity estimate and hence prove:

Conjecture 5.14. The probability that
⊕

ℓ/∈S Jp,q[ℓ∞] is cyclic is positive
and equal to

∏
ℓ/∈S

ℓ−2+ t1(ℓ)
ℓ − 1

t(ℓ)∏
i=1

(
1− 1

λi −1

)
+
(

ℓ2 +(t1(ℓ)−1)ℓ−1
ℓ3 − 2ℓ2 + 1

)t(ℓ)∏
i=1

(
1− λi

λ2
i −1

).

6. Examples

We make our results completely explicit for the two smallest values of p.
One may do similar computations for any value of p, after computing the
Hecke algebra T in Sage or magma.

6.1. Case p = 37. In this case #Xp = n = (37 − 1)/12 = 3 and hence
dim S2(Γ0(37)) = 2. The two newforms f1 and f2 of level 37 have rational
coefficients. It follows that T is a subring of Z × Z, and by a discriminant
computation in SageMath [13], we find that it has index two (coming from
the congruence f1 ≡ f2 (mod 2)). Thus Tℓ = Zℓ × Zℓ for ℓ > 2. By The-
orem 5.6, if ℓ > 3 is fixed and the primes q ̸≡ 1 (mod ℓ) go to ∞, the
probability that J37(q)[ℓ∞] ≃ Z/ℓk1 × Z/ℓk2 (as a Tℓ-module) is

(6.1) 1
ℓk1+k2

(
ℓ − 2
ℓ − 1

)δ0k1
(

ℓ − 2
ℓ − 1

)δ0k2
.

In particular, for fixed ℓ and for q ̸≡ 1 (mod ℓ) going to ∞, we have

P(J37(q)[ℓ∞] = 0) =
(

ℓ − 2
ℓ − 1

)2
.
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To determine the distribution of the underlying abelian groups (ignoring
the Tℓ-module structure), treat the two factors as unordered. For example,
the probability that J37(q)[ℓ∞] ≃ Z/ℓ × Z/ℓ2 as abelian groups is

P
(
J37(q)[ℓ∞] ≃ Z/ℓ × Z/ℓ2

)
+ P

(
J37(q)[ℓ∞] ≃ Z/ℓ2 × Z/ℓ

)
= 2 · 1

ℓ3 .

Example 6.1. The (i, j) entry of the following matrix is the number of
primes q ̸≡ 1 (mod 5) less than 14000712 with J37(q)[5∞] ≃ Z/5i−1 ×
Z/5j−1 (as abelian groups), with i ≤ j.

409362 218950 43483 8787 1829 359 69 12 1 0
0 29077 11591 2239 456 103 22 7 2 0
0 0 1132 465 92 15 4 1 0 0
0 0 0 45 20 1 1 0 0 0
0 0 0 0 4 0 0 0 0 0


We see that the group Z/5 × Z/25, say, shows up a proportion of 11591

728129 ≈
.015919 of the time, compared to the true asymptotic proportion 2

53 = .016.

For any ℓ > 3, Corollary 5.12 says that the proportion of q for which
J37(q)[ℓ∞] is cyclic is

1 − (ℓ + 2)(ℓ2 − ℓ − 1)
(ℓ − 1)3(ℓ + 1)2 .

If we restrict to q ̸≡ 1 (mod ℓ), then by Corollary 5.12 this proportion is(
1 + 2

ℓ − 2

)(
ℓ − 2
ℓ − 1

)2
= ℓ(ℓ − 2)

(ℓ − 1)2 .

For example, when ℓ = 5, this is 15
16 = .9375, which can be compared with

the proportion .937817 . . . computed from the data in the matrix above. If
we allow primes up to 19000853, then this proportion becomes .937752 . . .,
consistent with the convergence to .9375.

Conjecture 5.14 says that the probability that J37(q)[1/6] is cyclic is
∏
ℓ>3

(
1 − (ℓ + 2)(ℓ2 − ℓ − 1)

(ℓ − 1)3(ℓ + 1)2

)
= .885 . . .

6.2. Case p = 61. We have n = (61 − 1)/12 = 5, so dim S2(Γ0(61)) = 4.
There are two Gal(Q/Q)-orbits of newforms f1 and f2. The fields generated
by their Fourier coefficients are Q and K = Q[x]/(x3−30x−2), respectively.
The latter is a cubic field of discriminant 148 = 22 · 37. Sage reports that
the Hecke algebra T has discriminant 24 · 37 and hence is index two in the
maximal order Z×OK . The non-maximality of T comes from the congruence
f1 ≡ f2 (mod λ), where λ is the unique prime of K above 2.
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Thus, for any fixed ℓ /∈ {2, 5, 37}, we have

Tℓ ≃ Zℓ ×
⊕
λ|ℓ

Oλ,

where the sum is over the primes λ of OK above ℓ and Oλ is the completion
of OK at λ. Note that Oλ is unramified of degree fλ, where fλ is the residual
degree: OK/λ ≃ Fℓfλ . The residual degrees are either (1, 1, 1), (1, 2), or (3),
depending on how ℓ splits in OK . By Cebotarev’s density theorem, the
proportion of primes ℓ with the given splitting type is 1/6, 1/2, and 1/3,
respectively.

For example, the prime 13 splits as l1l2 in OK , with li having norm 13i.
Thus, λ1 = λ2 = 13 and λ3 = 132, and

J61(q)[13∞] ≃ (Z/13a) × (Z/13b) × (Z/13c)2

for integers a, b, c ≥ 0. For primes q ̸≡ 1 (mod 13), the probability for the
tuple (a, b, c) can be read off of Theorem 1.2. For example, the probability
that J61(q)[13∞] ≃ (Z/13)3, as abelian groups, is

2 · 1
13

11
12

1
132 ≈ .000834,

corresponding to the two tuples (1, 0, 1) and (0, 1, 1). In Table 6.1, we com-
pare the asymptotic proportions with the observed proportion for the first
62772 primes q ̸≡ 1 (mod 13).

Table 6.1. Distribution of the group J61(q)[13∞] ≃∏4
i=1(Z/13ai), for q ̸≡ 1 (mod 13)

(a1, a2, a3, a4) Limiting proportion Observed proportion (q ≤ 861997)
(0, 0, 0, 0) 20207/24192 ≈ .83527 ≈ .8356
(0, 0, 0, 1) 1837/13104 ≈ .1401 ≈ .1398
(0, 0, 1, 1) 1849/170352 ≈ .01085 ≈ .01096
(0, 0, 0, 2) 1837/170352 ≈ .01078 ≈ .01067
(0, 0, 1, 2) 167/184548 ≈ .0009049 ≈ .0009239
(0, 1, 1, 1) 11/13182 ≈ .00083447 ≈ .000860
(0, 0, 0, 3) 1837/2214576 ≈ .0008295 ≈ .0008283

The shape of the Euler factor in Corollary 5.12 depends on the splitting
type of ℓ in Z×OK . For the types (1, 1, 1, 1), (1, 1, 2), and (1, 3) we compute
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the following Euler factors:

f1(ℓ) = 1 − 6ℓ7 − 2ℓ6 − 43ℓ5 + 17ℓ4 + 92ℓ3 − 2ℓ2 − 79ℓ − 34
(ℓ − 1)5(ℓ + 1)4

f2(ℓ) = 1 − (ℓ + 1)3(2ℓ7 − 5ℓ5 − 3ℓ4 + 4ℓ2 + 7ℓ + 2)
(ℓ − 1)4(ℓ2 + 1)

f3(ℓ) = 1 − ℓ4 − ℓ3 + ℓ − 2
(ℓ − 1)2(ℓ + 1)(ℓ2 − ℓ + 1)(ℓ2 + ℓ + 1)

Since 2 · 3 · 5 · 37 = 1110, Conjecture 5.14 predicts that J61(q)[1/1110] is
cyclic with probability∏

ℓOK=λ1λ2λ3

f1(ℓ)
∏

ℓOK=λ1λ2

f2(ℓ)
∏

ℓOK=(ℓ)
f3(ℓ) = .9544 . . . .

For primes q up to 861997, we found the proportion to be 65325
68492 ≈ .9537.
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