For distinct odd primes and , we define the Catalan curve by the affine equation . In this article we construct the Sato–Tate groups of the Jacobians in order to study the limiting distributions of coefficients of their normalized -polynomials. Catalan Jacobians are nondegenerate and simple with noncyclic Galois groups (of the endomorphism fields over ), thus making them interesting varieties to study in the context of Sato–Tate groups. We compute both statistical and numerical moments for the limiting distributions. Lastly, we determine the Galois endomorphism types of the Jacobians using both old and new techniques.
Étant donnés deux nombres premiers impairs distincts et , nous définissons la courbe de Catalan donnée par l’équation affine . Dans cet article, nous construisons les groupes de Sato–Tate des variétés jacobiennes de ces courbes, afin d’étudier les distributions asymptotiques des coefficients de leurs polynômes de Weil normalisés. Ces jacobiennes de Catalan sont non-dégénérées et simples et le groupe de Galois de leur corps d’endomorphismes sur n’est pas cyclique, ce qui en font des variétés intéressantes dans le contexte des groupes de Sato–Tate. Dans cet article, nous calculons les moments statistiques et numériques des distributions asymptotiques. Enfin, nous déterminons les types des modules galoisiens donnés par l’algèbre réelle des endomorphismes de ces jacobiennes, en utilisant des techniques connues ainsi que certaines nouvelles techniques.
Revised:
Accepted:
Published online:
Keywords: Sato–Tate groups, Sato–Tate distributions, Jacobian varieties, endomorphism algebras

@article{JTNB_2023__35_1_87_0, author = {Heidi Goodson}, title = {Sato{\textendash}Tate {Distributions} of {Catalan} {Curves}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {87--113}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {35}, number = {1}, year = {2023}, doi = {10.5802/jtnb.1238}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1238/} }
TY - JOUR AU - Heidi Goodson TI - Sato–Tate Distributions of Catalan Curves JO - Journal de théorie des nombres de Bordeaux PY - 2023 SP - 87 EP - 113 VL - 35 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1238/ DO - 10.5802/jtnb.1238 LA - en ID - JTNB_2023__35_1_87_0 ER -
%0 Journal Article %A Heidi Goodson %T Sato–Tate Distributions of Catalan Curves %J Journal de théorie des nombres de Bordeaux %D 2023 %P 87-113 %V 35 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1238/ %R 10.5802/jtnb.1238 %G en %F JTNB_2023__35_1_87_0
Heidi Goodson. Sato–Tate Distributions of Catalan Curves. Journal de théorie des nombres de Bordeaux, Volume 35 (2023) no. 1, pp. 87-113. doi : 10.5802/jtnb.1238. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1238/
[1] Hodge cycles on CM abelian varieties of Fermat type, Comment. Math. Univ. St. Pauli, Volume 51 (2002) no. 1, pp. 99-130 | MR | Zbl
[2] The Hodge conjecture for the Jacobian varieties of generalized Catalan curves, Tokyo J. Math., Volume 27 (2004) no. 2, pp. 313-335 | DOI | MR | Zbl
[3] The twisting Sato–Tate group of the curve , Math. Z., Volume 290 (2018) no. 3-4, pp. 991-1022 | DOI | MR | Zbl
[4] On Galois representations for abelian varieties with complex and real multiplications, J. Number Theory, Volume 100 (2003) no. 1, pp. 117-132 | DOI | MR | Zbl
[5] An algebraic Sato–Tate group and Sato–Tate conjecture, Indiana Univ. Math. J., Volume 64 (2015) no. 1, pp. 245-274 | DOI | MR | Zbl
[6] A family of Calabi–Yau varieties and potential automorphy II, Publ. Res. Inst. Math. Sci., Volume 47 (2011) no. 1, pp. 29-98 | DOI | MR | Zbl
[7] Complex abelian varieties, Grundlehren der Mathematischen Wissenschaften, 302, Springer, 1992, viii+435 pages | DOI | MR
[8] Automorphy for some -adic lifts of automorphic mod Galois representations, Publ. Math., Inst. Hautes Étud. Sci. (2008) no. 108, pp. 1-181 (with Appendix A, summarizing unpublished work of Russ Mann, and Appendix B by Marie-France Vignéras) | DOI | Numdam | MR | Zbl
[9] Arithmetic invariants from Sato–Tate moments, C. R. Math. Acad. Sci. Paris, Volume 357 (2019) no. 11-12, pp. 823-826 | DOI | Numdam | MR | Zbl
[10] Sato–Tate distributions of and , J. Algebra, Volume 597 (2022), pp. 241-265 | DOI | MR | Zbl
[11] Frobenius distribution for quotients of Fermat curves of prime exponent, Can. J. Math., Volume 68 (2016) no. 2, pp. 361-394 | DOI | MR | Zbl
[12] Sato–Tate distributions and Galois endomorphism modules in genus 2, Compos. Math., Volume 148 (2012) no. 5, pp. 1390-1442 | DOI | MR | Zbl
[13] Sato–Tate groups of abelian threefolds (2021) (https://arxiv.org/abs/2106.13759)
[14] Sato–Tate groups of abelian threefolds: a preview of the classification, Arithmetic, geometry, cryptography and coding theory (Contemporary Mathematics), Volume 770, American Mathematical Society, 2021, pp. 103-129 | DOI | MR | Zbl
[15] Sato–Tate distributions of twists of the Fermat and the Klein quartics, Res. Math. Sci., Volume 5 (2018) no. 4, 41, 40 pages | DOI | MR | Zbl
[16] Sato–Tate distributions of twists of and , Algebra Number Theory, Volume 8 (2014) no. 3, pp. 543-585 | DOI | MR | Zbl
[17] Sato–Tate groups of and , Frobenius distributions: Lang–Trotter and Sato–Tate conjectures (Contemporary Mathematics), Volume 663, American Mathematical Society, 2016, pp. 103-126 | DOI | MR | Zbl
[18] A family of Calabi–Yau varieties and potential automorphy, Ann. Math., Volume 171 (2010) no. 2, pp. 779-813 | DOI | MR | Zbl
[19] Computing Hasse–Witt matrices of hyperelliptic curves in average polynomial time, LMS J. Comput. Math., Volume 17 (2014), pp. 257-273 | DOI | MR | Zbl
[20] Computing Hasse–Witt matrices of hyperelliptic curves in average polynomial time, II, Frobenius distributions: Lang–Trotter and Sato–Tate conjectures (Contemporary Mathematics), Volume 663, American Mathematical Society, 2016, pp. 127-147 | DOI | MR | Zbl
[21] Algebraic cycles on nonsimple abelian varieties, Duke Math. J., Volume 58 (1989) no. 1, pp. 31-37 | DOI | MR | Zbl
[22] Hodge cycles on the Jacobian variety of the Catalan curve, Compos. Math., Volume 107 (1997) no. 3, pp. 339-353 | DOI | MR | Zbl
[23] On the Sato–Tate conjecture for non-generic abelian surfaces, Trans. Am. Math. Soc., Volume 369 (2017) no. 9, pp. 6303-6325 (with an appendix by Francesc Fité) | DOI | MR | Zbl
[24] The Sato–Tate conjecture for a Picard curve with complex multiplication (with an appendix by Francesc Fité), Number theory related to modular curves—Momose memorial volume (Contemporary Mathematics), Volume 701, American Mathematical Society, 2018, pp. 151-165 | DOI | MR | Zbl
[25] Primary cyclotomic units and a proof of Catalan’s conjecture, J. Reine Angew. Math., Volume 572 (2004), pp. 167-195 | DOI | MR | Zbl
[26] Exceptional Hodge classes on certain abelian varieties, Math. Ann., Volume 268 (1984) no. 2, pp. 197-206 | DOI | MR | Zbl
[27] Algebraic cycles on abelian varieties of complex multiplication type, Ann. Math., Volume 88 (1968), pp. 161-180 | DOI | MR | Zbl
[28] CoCalc Collaborative Computation Online (2020) (https://cocalc.com/)
[29] Linear representations of finite groups, Graduate Texts in Mathematics, 42, Springer, 1977, 170 pages (translated from the second French edition by Leonard L. Scott) | DOI | MR
[30] Lectures on , CRC Research Notes in Mathematics, 11, CRC Press, 2012, x+163 pages | MR
[31] Algebraic cycles on abelian varieties of Fermat type, Math. Ann., Volume 258 (1981) no. 1, pp. 65-80 | DOI | MR | Zbl
[32] Sato–Tate distributions, Analytic methods in arithmetic geometry (Contemporary Mathematics), Volume 740, American Mathematical Society, 2019, pp. 197-248 | DOI | MR | Zbl
[33] Automorphy for some -adic lifts of automorphic mod Galois representations. II, Publ. Math., Inst. Hautes Étud. Sci. (2008) no. 108, pp. 183-239 | DOI | Numdam | MR | Zbl
Cited by Sources: