Sato–Tate Distributions of Catalan Curves
Journal de théorie des nombres de Bordeaux, Tome 35 (2023) no. 1, pp. 87-113.

Étant donnés deux nombres premiers impairs distincts p et q, nous définissons la courbe de Catalan C p,q donnée par l’équation affine y q =x p -1. Dans cet article, nous construisons les groupes de Sato–Tate des variétés jacobiennes de ces courbes, afin d’étudier les distributions asymptotiques des coefficients de leurs polynômes de Weil normalisés. Ces jacobiennes de Catalan sont non-dégénérées et simples et le groupe de Galois de leur corps d’endomorphismes sur n’est pas cyclique, ce qui en font des variétés intéressantes dans le contexte des groupes de Sato–Tate. Dans cet article, nous calculons les moments statistiques et numériques des distributions asymptotiques. Enfin, nous déterminons les types des modules galoisiens donnés par l’algèbre réelle des endomorphismes de ces jacobiennes, en utilisant des techniques connues ainsi que certaines nouvelles techniques.

For distinct odd primes p and q, we define the Catalan curve C p,q by the affine equation y q =x p -1. In this article we construct the Sato–Tate groups of the Jacobians in order to study the limiting distributions of coefficients of their normalized L-polynomials. Catalan Jacobians are nondegenerate and simple with noncyclic Galois groups (of the endomorphism fields over ), thus making them interesting varieties to study in the context of Sato–Tate groups. We compute both statistical and numerical moments for the limiting distributions. Lastly, we determine the Galois endomorphism types of the Jacobians using both old and new techniques.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1238
Classification : 11M50, 11G10, 11G20, 14G10
Mots clés : Sato–Tate groups, Sato–Tate distributions, Jacobian varieties, endomorphism algebras
Heidi Goodson 1

1 Department of Mathematics Brooklyn College, City University of New York 2900 Bedford Avenue, Brooklyn, NY 11210 USA
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2023__35_1_87_0,
     author = {Heidi Goodson},
     title = {Sato{\textendash}Tate {Distributions} of {Catalan} {Curves}},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {87--113},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {35},
     number = {1},
     year = {2023},
     doi = {10.5802/jtnb.1238},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1238/}
}
TY  - JOUR
AU  - Heidi Goodson
TI  - Sato–Tate Distributions of Catalan Curves
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2023
SP  - 87
EP  - 113
VL  - 35
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1238/
DO  - 10.5802/jtnb.1238
LA  - en
ID  - JTNB_2023__35_1_87_0
ER  - 
%0 Journal Article
%A Heidi Goodson
%T Sato–Tate Distributions of Catalan Curves
%J Journal de théorie des nombres de Bordeaux
%D 2023
%P 87-113
%V 35
%N 1
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1238/
%R 10.5802/jtnb.1238
%G en
%F JTNB_2023__35_1_87_0
Heidi Goodson. Sato–Tate Distributions of Catalan Curves. Journal de théorie des nombres de Bordeaux, Tome 35 (2023) no. 1, pp. 87-113. doi : 10.5802/jtnb.1238. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1238/

[1] Noboru Aoki Hodge cycles on CM abelian varieties of Fermat type, Comment. Math. Univ. St. Pauli, Volume 51 (2002) no. 1, pp. 99-130 | MR | Zbl

[2] Noboru Aoki The Hodge conjecture for the Jacobian varieties of generalized Catalan curves, Tokyo J. Math., Volume 27 (2004) no. 2, pp. 313-335 | DOI | MR | Zbl

[3] Sonny Arora; Victoria Cantoral-Farfán; Aaron Landesman; Davide Lombardo; Jackson S. Morrow The twisting Sato–Tate group of the curve y 2 =x 8 -14x 4 +1, Math. Z., Volume 290 (2018) no. 3-4, pp. 991-1022 | DOI | MR | Zbl

[4] Grzegorz Banaszak; Wojciech Gajda; Piotr Krasoń On Galois representations for abelian varieties with complex and real multiplications, J. Number Theory, Volume 100 (2003) no. 1, pp. 117-132 | DOI | MR | Zbl

[5] Grzegorz Banaszak; Kiran S. Kedlaya An algebraic Sato–Tate group and Sato–Tate conjecture, Indiana Univ. Math. J., Volume 64 (2015) no. 1, pp. 245-274 | DOI | MR | Zbl

[6] Tom Barnet-Lamb; David Geraghty; Michael Harris; Richard Taylor A family of Calabi–Yau varieties and potential automorphy II, Publ. Res. Inst. Math. Sci., Volume 47 (2011) no. 1, pp. 29-98 | DOI | MR | Zbl

[7] Christina Birkenhake; Herbert Lange Complex abelian varieties, Grundlehren der Mathematischen Wissenschaften, 302, Springer, 1992, viii+435 pages | DOI | MR

[8] Laurent Clozel; Michael Harris; Richard Taylor Automorphy for some l-adic lifts of automorphic mod l Galois representations, Publ. Math., Inst. Hautes Étud. Sci. (2008) no. 108, pp. 1-181 (with Appendix A, summarizing unpublished work of Russ Mann, and Appendix B by Marie-France Vignéras) | DOI | Numdam | MR | Zbl

[9] Edgar Costa; Francesc Fité; Andrew V. Sutherland Arithmetic invariants from Sato–Tate moments, C. R. Math. Acad. Sci. Paris, Volume 357 (2019) no. 11-12, pp. 823-826 | DOI | Numdam | MR | Zbl

[10] Melissa Emory; Heidi Goodson Sato–Tate distributions of y 2 =x p -1 and y 2 =x 2p -1, J. Algebra, Volume 597 (2022), pp. 241-265 | DOI | MR | Zbl

[11] Francesc Fité; Josep González; Joan-Carles Lario Frobenius distribution for quotients of Fermat curves of prime exponent, Can. J. Math., Volume 68 (2016) no. 2, pp. 361-394 | DOI | MR | Zbl

[12] Francesc Fité; Kiran S. Kedlaya; Víctor Rotger; Andrew V. Sutherland Sato–Tate distributions and Galois endomorphism modules in genus 2, Compos. Math., Volume 148 (2012) no. 5, pp. 1390-1442 | DOI | MR | Zbl

[13] Francesc Fité; Kiran S. Kedlaya; Andrew V. Sutherland Sato–Tate groups of abelian threefolds (2021) (https://arxiv.org/abs/2106.13759)

[14] Francesc Fité; Kiran S. Kedlaya; Andrew V. Sutherland Sato–Tate groups of abelian threefolds: a preview of the classification, Arithmetic, geometry, cryptography and coding theory (Contemporary Mathematics), Volume 770, American Mathematical Society, 2021, pp. 103-129 | DOI | MR | Zbl

[15] Francesc Fité; Elisa Lorenzo García; Andrew V. Sutherland Sato–Tate distributions of twists of the Fermat and the Klein quartics, Res. Math. Sci., Volume 5 (2018) no. 4, 41, 40 pages | DOI | MR | Zbl

[16] Francesc Fité; Andrew V. Sutherland Sato–Tate distributions of twists of y 2 =x 5 -x and y 2 =x 6 +1, Algebra Number Theory, Volume 8 (2014) no. 3, pp. 543-585 | DOI | MR | Zbl

[17] Francesc Fité; Andrew V. Sutherland Sato–Tate groups of y 2 =x 8 +c and y 2 =x 7 -cx, Frobenius distributions: Lang–Trotter and Sato–Tate conjectures (Contemporary Mathematics), Volume 663, American Mathematical Society, 2016, pp. 103-126 | DOI | MR | Zbl

[18] Michael Harris; Nick Shepherd-Barron; Richard Taylor A family of Calabi–Yau varieties and potential automorphy, Ann. Math., Volume 171 (2010) no. 2, pp. 779-813 | DOI | MR | Zbl

[19] David Harvey; Andrew V. Sutherland Computing Hasse–Witt matrices of hyperelliptic curves in average polynomial time, LMS J. Comput. Math., Volume 17 (2014), pp. 257-273 | DOI | MR | Zbl

[20] David Harvey; Andrew V. Sutherland Computing Hasse–Witt matrices of hyperelliptic curves in average polynomial time, II, Frobenius distributions: Lang–Trotter and Sato–Tate conjectures (Contemporary Mathematics), Volume 663, American Mathematical Society, 2016, pp. 127-147 | DOI | MR | Zbl

[21] Fumio Hazama Algebraic cycles on nonsimple abelian varieties, Duke Math. J., Volume 58 (1989) no. 1, pp. 31-37 | DOI | MR | Zbl

[22] Fumio Hazama Hodge cycles on the Jacobian variety of the Catalan curve, Compos. Math., Volume 107 (1997) no. 3, pp. 339-353 | DOI | MR | Zbl

[23] Christian Johansson On the Sato–Tate conjecture for non-generic abelian surfaces, Trans. Am. Math. Soc., Volume 369 (2017) no. 9, pp. 6303-6325 (with an appendix by Francesc Fité) | DOI | MR | Zbl

[24] Joan-Carles Lario; Anna Somoza The Sato–Tate conjecture for a Picard curve with complex multiplication (with an appendix by Francesc Fité), Number theory related to modular curves—Momose memorial volume (Contemporary Mathematics), Volume 701, American Mathematical Society, 2018, pp. 151-165 | DOI | MR | Zbl

[25] Preda Mihăilescu Primary cyclotomic units and a proof of Catalan’s conjecture, J. Reine Angew. Math., Volume 572 (2004), pp. 167-195 | DOI | MR | Zbl

[26] V. Kumar Murty Exceptional Hodge classes on certain abelian varieties, Math. Ann., Volume 268 (1984) no. 2, pp. 197-206 | DOI | MR | Zbl

[27] Henry Pohlmann Algebraic cycles on abelian varieties of complex multiplication type, Ann. Math., Volume 88 (1968), pp. 161-180 | DOI | MR | Zbl

[28] Inc. SageMath CoCalc Collaborative Computation Online (2020) (https://cocalc.com/)

[29] Jean-Pierre Serre Linear representations of finite groups, Graduate Texts in Mathematics, 42, Springer, 1977, 170 pages (translated from the second French edition by Leonard L. Scott) | DOI | MR

[30] Jean-Pierre Serre Lectures on N X (p), CRC Research Notes in Mathematics, 11, CRC Press, 2012, x+163 pages | MR

[31] Tetsuji Shioda Algebraic cycles on abelian varieties of Fermat type, Math. Ann., Volume 258 (1981) no. 1, pp. 65-80 | DOI | MR | Zbl

[32] Andrew V. Sutherland Sato–Tate distributions, Analytic methods in arithmetic geometry (Contemporary Mathematics), Volume 740, American Mathematical Society, 2019, pp. 197-248 | DOI | MR | Zbl

[33] Richard Taylor Automorphy for some l-adic lifts of automorphic mod l Galois representations. II, Publ. Math., Inst. Hautes Étud. Sci. (2008) no. 108, pp. 183-239 | DOI | Numdam | MR | Zbl

Cité par Sources :