Extremal Sidon Sets are Fourier Uniform, with Applications to Partition Regularity
Journal de théorie des nombres de Bordeaux, Tome 35 (2023) no. 1, pp. 115-134.

En généralisant des résultats d’Erdős–Freud et Lindström, nous prouvons que le plus grand sous-ensemble de Sidon d’un intervalle d’entiers borné est équidistribué dans des voisinages de Bohr. Nous le faisons en montrant que les ensembles de Sidon extrémaux sont Fourier-pseudo-aléatoires, dans le sens qu’ils n’ont pas de coefficients de Fourier grands non triviaux. Comme application, nous en déduisons que pour une equation régulière à cinq variables et plus, toute coloration finie d’un ensemble extrémal de Sidon a une solution monochromatique.

Generalising results of Erdős–Freud and Lindström, we prove that the largest Sidon subset of a bounded interval of integers is equidistributed in Bohr neighbourhoods. We establish this by showing that extremal Sidon sets are Fourier-pseudorandom, in that they have no large non-trivial Fourier coefficients. As a further application we deduce that, for any partition regular equation in five or more variables, every finite colouring of an extremal Sidon set has a monochromatic solution.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1239
Classification : 11B30, 11B25
Mots clés : Sidon sets, pseudorandomness, equidistribution, partition regularity
Miquel Ortega 1 ; Sean Prendiville 2

1 Departament de Matemàtiques Universitat Politècnica de Catalunya 08028, Barcelona, Spain
2 Department of Mathematics and Statistics Lancaster University LA1 4YF UK
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2023__35_1_115_0,
     author = {Miquel Ortega and Sean Prendiville},
     title = {Extremal {Sidon} {Sets} are {Fourier} {Uniform,} with {Applications} to {Partition} {Regularity}},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {115--134},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {35},
     number = {1},
     year = {2023},
     doi = {10.5802/jtnb.1239},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1239/}
}
TY  - JOUR
AU  - Miquel Ortega
AU  - Sean Prendiville
TI  - Extremal Sidon Sets are Fourier Uniform, with Applications to Partition Regularity
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2023
SP  - 115
EP  - 134
VL  - 35
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1239/
DO  - 10.5802/jtnb.1239
LA  - en
ID  - JTNB_2023__35_1_115_0
ER  - 
%0 Journal Article
%A Miquel Ortega
%A Sean Prendiville
%T Extremal Sidon Sets are Fourier Uniform, with Applications to Partition Regularity
%J Journal de théorie des nombres de Bordeaux
%D 2023
%P 115-134
%V 35
%N 1
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1239/
%R 10.5802/jtnb.1239
%G en
%F JTNB_2023__35_1_115_0
Miquel Ortega; Sean Prendiville. Extremal Sidon Sets are Fourier Uniform, with Applications to Partition Regularity. Journal de théorie des nombres de Bordeaux, Tome 35 (2023) no. 1, pp. 115-134. doi : 10.5802/jtnb.1239. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1239/

[1] Roger C. Baker; Glyn Harman; Janos Pintz The difference between consecutive primes. II, Proc. Lond. Math. Soc., Volume 83 (2001) no. 3, pp. 532-562 | DOI | MR | Zbl

[2] Jean Bourgain On triples in arithmetic progression, Geom. Funct. Anal., Volume 9 (1999) no. 5, pp. 968-984 | DOI | MR | Zbl

[3] Javier Cilleruelo Gaps in dense Sidon sets, Integers, Volume 0 (2000), A11, 6 pages | MR | Zbl

[4] David Conlon; Jacob Fox; Benny Sudakov; Yufei Zhao The regularity method for graphs with few 4-cycles, J. Lond. Math. Soc., Volume 104 (2021) no. 5, pp. 2376-2401 | DOI | MR | Zbl

[5] David Conlon; Jacob Fox; Benny Sudakov; Yufei Zhao Which graphs can be counted in C 4 -free graphs? (2021) (https://arxiv.org/abs/2106.03261)

[6] David Conlon; William T. Gowers Combinatorial theorems in sparse random sets, Ann. Math., Volume 184 (2016) no. 2, pp. 367-454 | DOI | MR | Zbl

[7] Sean Eberhard The apparent structure of dense Sidon sets talk given at CANT (2021), https://youtu.be/s4ItIkkUvF4

[8] Sean Eberhard; Freddie Manners The apparent structure of dense Sidon sets (2021) (https://arxiv.org/abs/2107.05744)

[9] Paul Erdős; Robert Freud On sums of a Sidon-sequence, J. Number Theory, Volume 38 (1991) no. 2, pp. 196-205 | DOI | MR | Zbl

[10] Paul Erdős; Pál Turán On a problem of Sidon in additive number theory, and on some related problems, J. Lond. Math. Soc., Volume 16 (1941), pp. 212-215 | DOI | MR | Zbl

[11] Arthur Forey; Emmanuel Kowalski Algebraic curves in their Jacobian are Sidon sets (2021) (https://arxiv.org/abs/2103.04917)

[12] Peter Frankl; Ronald L. Graham; Vojtěch Rödl Quantitative theorems for regular systems of equations, J. Comb. Theory, Volume 47 (1988) no. 2, pp. 246-261 | DOI | MR | Zbl

[13] William T. Gowers What are dense Sidon subsets of {1,2,...,n} like?, 2012 (blogpost available at https://bit.ly/3xHq2NM)

[14] Ronald L. Graham; Bruce L. Rothschild; Joel H. Spencer Ramsey theory, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, 1990

[15] Peter Keevash; Benny Sudakov; Jacques Verstraëte On a conjecture of Erdős and Simonovits: Even cycles, Combinatorica, Volume 33 (2013) no. 6, pp. 699-732 | DOI | Zbl

[16] Mihail N. Kolountzakis On the uniform distribution in residue classes of dense sets of integers with distinct sums, J. Number Theory, Volume 76 (1999) no. 1, pp. 147-153 | DOI | MR | Zbl

[17] Bernt Lindström Well distribution of Sidon sets in residue classes, J. Number Theory, Volume 69 (1998) no. 2, pp. 197-200 | DOI | MR | Zbl

[18] Hugh L. Montgomery Ten lectures on the interface between analytic number theory and harmonic analysis, Regional Conference Series in Mathematics, 84, American Mathematical Society, 1994

[19] Kevin O’Bryant A complete annotated bibliography of work related to Sidon sequences, Electron. J. Comb., Volume DS11 (2004) | MR | Zbl

[20] Sean Prendiville Solving equations in dense Sidon sets, Math. Proc. Camb. Philos. Soc., Volume 173 (2022) no. 1, pp. 25-34 | DOI | MR | Zbl

[21] Klaus F. Roth On certain sets of integers. II, Integers, Volume 29 (1954), pp. 20-26 | MR | Zbl

[22] James Singer A theorem in finite projective geometry and some applications to number theory, Trans. Am. Math. Soc., Volume 43 (1938), pp. 377-385 | DOI | MR | Zbl

[23] Terence Tao; Van H. Vu Additive Combinatorics, Cambridge Studies in Advanced Mathematics, 105, Cambridge University Press, 2006

Cité par Sources :