Generalising results of Erdős–Freud and Lindström, we prove that the largest Sidon subset of a bounded interval of integers is equidistributed in Bohr neighbourhoods. We establish this by showing that extremal Sidon sets are Fourier-pseudorandom, in that they have no large non-trivial Fourier coefficients. As a further application we deduce that, for any partition regular equation in five or more variables, every finite colouring of an extremal Sidon set has a monochromatic solution.
En généralisant des résultats d’Erdős–Freud et Lindström, nous prouvons que le plus grand sous-ensemble de Sidon d’un intervalle d’entiers borné est équidistribué dans des voisinages de Bohr. Nous le faisons en montrant que les ensembles de Sidon extrémaux sont Fourier-pseudo-aléatoires, dans le sens qu’ils n’ont pas de coefficients de Fourier grands non triviaux. Comme application, nous en déduisons que pour une equation régulière à cinq variables et plus, toute coloration finie d’un ensemble extrémal de Sidon a une solution monochromatique.
Revised:
Accepted:
Published online:
Keywords: Sidon sets, pseudorandomness, equidistribution, partition regularity
@article{JTNB_2023__35_1_115_0, author = {Miquel Ortega and Sean Prendiville}, title = {Extremal {Sidon} {Sets} are {Fourier} {Uniform,} with {Applications} to {Partition} {Regularity}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {115--134}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {35}, number = {1}, year = {2023}, doi = {10.5802/jtnb.1239}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1239/} }
TY - JOUR AU - Miquel Ortega AU - Sean Prendiville TI - Extremal Sidon Sets are Fourier Uniform, with Applications to Partition Regularity JO - Journal de théorie des nombres de Bordeaux PY - 2023 SP - 115 EP - 134 VL - 35 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1239/ DO - 10.5802/jtnb.1239 LA - en ID - JTNB_2023__35_1_115_0 ER -
%0 Journal Article %A Miquel Ortega %A Sean Prendiville %T Extremal Sidon Sets are Fourier Uniform, with Applications to Partition Regularity %J Journal de théorie des nombres de Bordeaux %D 2023 %P 115-134 %V 35 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1239/ %R 10.5802/jtnb.1239 %G en %F JTNB_2023__35_1_115_0
Miquel Ortega; Sean Prendiville. Extremal Sidon Sets are Fourier Uniform, with Applications to Partition Regularity. Journal de théorie des nombres de Bordeaux, Volume 35 (2023) no. 1, pp. 115-134. doi : 10.5802/jtnb.1239. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1239/
[1] The difference between consecutive primes. II, Proc. Lond. Math. Soc., Volume 83 (2001) no. 3, pp. 532-562 | DOI | MR | Zbl
[2] On triples in arithmetic progression, Geom. Funct. Anal., Volume 9 (1999) no. 5, pp. 968-984 | DOI | MR | Zbl
[3] Gaps in dense Sidon sets, Integers, Volume 0 (2000), A11, 6 pages | MR | Zbl
[4] The regularity method for graphs with few 4-cycles, J. Lond. Math. Soc., Volume 104 (2021) no. 5, pp. 2376-2401 | DOI | MR | Zbl
[5] Which graphs can be counted in -free graphs? (2021) (https://arxiv.org/abs/2106.03261)
[6] Combinatorial theorems in sparse random sets, Ann. Math., Volume 184 (2016) no. 2, pp. 367-454 | DOI | MR | Zbl
[7] The apparent structure of dense Sidon sets talk given at CANT (2021), https://youtu.be/s4ItIkkUvF4
[8] The apparent structure of dense Sidon sets (2021) (https://arxiv.org/abs/2107.05744)
[9] On sums of a Sidon-sequence, J. Number Theory, Volume 38 (1991) no. 2, pp. 196-205 | DOI | MR | Zbl
[10] On a problem of Sidon in additive number theory, and on some related problems, J. Lond. Math. Soc., Volume 16 (1941), pp. 212-215 | DOI | MR | Zbl
[11] Algebraic curves in their Jacobian are Sidon sets (2021) (https://arxiv.org/abs/2103.04917)
[12] Quantitative theorems for regular systems of equations, J. Comb. Theory, Volume 47 (1988) no. 2, pp. 246-261 | DOI | MR | Zbl
[13] What are dense Sidon subsets of like?, 2012 (blogpost available at https://bit.ly/3xHq2NM)
[14] Ramsey theory, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, 1990
[15] On a conjecture of Erdős and Simonovits: Even cycles, Combinatorica, Volume 33 (2013) no. 6, pp. 699-732 | DOI | Zbl
[16] On the uniform distribution in residue classes of dense sets of integers with distinct sums, J. Number Theory, Volume 76 (1999) no. 1, pp. 147-153 | DOI | MR | Zbl
[17] Well distribution of Sidon sets in residue classes, J. Number Theory, Volume 69 (1998) no. 2, pp. 197-200 | DOI | MR | Zbl
[18] Ten lectures on the interface between analytic number theory and harmonic analysis, Regional Conference Series in Mathematics, 84, American Mathematical Society, 1994
[19] A complete annotated bibliography of work related to Sidon sequences, Electron. J. Comb., Volume DS11 (2004) | MR | Zbl
[20] Solving equations in dense Sidon sets, Math. Proc. Camb. Philos. Soc., Volume 173 (2022) no. 1, pp. 25-34 | DOI | MR | Zbl
[21] On certain sets of integers. II, Integers, Volume 29 (1954), pp. 20-26 | MR | Zbl
[22] A theorem in finite projective geometry and some applications to number theory, Trans. Am. Math. Soc., Volume 43 (1938), pp. 377-385 | DOI | MR | Zbl
[23] Additive Combinatorics, Cambridge Studies in Advanced Mathematics, 105, Cambridge University Press, 2006
Cited by Sources: