For an odd prime number , we study the number of generators of the unramified Iwasawa modules of the maximal multiple -extensions over the Iwasawa algebra. In our previous paper, under several assumptions for an imaginary quadratic field, we obtained a necessary and sufficient condition for the cyclicity of the Iwasawa module over the Iwasawa algebra. The present work provides computational methods and numerical examples of Iwasawa modules that are cyclic as modules over the Iwasawa algebra. We remark that our methods do not require the assumption that Greenberg’s generalized conjecture holds.
Pour un nombre premier impair , on s’intéresse au nombre de générateurs des modules d’Iwasawa non ramifiés des -extensions multiples maximales sur l’algèbre d’Iwasawa. Dans notre article précédent, sous plusieurs hypothèses sur un corps quadratique imaginaire, nous avons obtenu une condition nécessaire et suffisante de cyclicité du module d’Iwasawa sur l’algèbre d’Iwasawa. Le présent travail fournit des méthodes de calcul et des exemples numériques des modules d’Iwasawa qui sont cycliques en tant que modules sur l’algèbre d’Iwasawa. Nous remarquons que nos méthodes ne supposent pas la véracité de la conjecture de Greenberg généralisée.
Revised:
Accepted:
Published online:
Keywords: Iwasawa modules, Imaginary quadratic fields, Multiple $\mathbb{Z}_p$-extensions
Takashi Miura 1; Kazuaki Murakami 2; Keiji Okano 3; Rei Otsuki 4

@article{JTNB_2022__34_3_881_0, author = {Takashi Miura and Kazuaki Murakami and Keiji Okano and Rei Otsuki}, title = {On the {Cyclicity} of the {Unramified} {Iwasawa} {Modules} of the {Maximal} {Multiple} $\protect \mathbb{Z}_p${-Extensions} {Over} {Imaginary} {Quadratic} {Fields}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {881--902}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {34}, number = {3}, year = {2022}, doi = {10.5802/jtnb.1232}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1232/} }
TY - JOUR AU - Takashi Miura AU - Kazuaki Murakami AU - Keiji Okano AU - Rei Otsuki TI - On the Cyclicity of the Unramified Iwasawa Modules of the Maximal Multiple $\protect \mathbb{Z}_p$-Extensions Over Imaginary Quadratic Fields JO - Journal de théorie des nombres de Bordeaux PY - 2022 SP - 881 EP - 902 VL - 34 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1232/ DO - 10.5802/jtnb.1232 LA - en ID - JTNB_2022__34_3_881_0 ER -
%0 Journal Article %A Takashi Miura %A Kazuaki Murakami %A Keiji Okano %A Rei Otsuki %T On the Cyclicity of the Unramified Iwasawa Modules of the Maximal Multiple $\protect \mathbb{Z}_p$-Extensions Over Imaginary Quadratic Fields %J Journal de théorie des nombres de Bordeaux %D 2022 %P 881-902 %V 34 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1232/ %R 10.5802/jtnb.1232 %G en %F JTNB_2022__34_3_881_0
Takashi Miura; Kazuaki Murakami; Keiji Okano; Rei Otsuki. On the Cyclicity of the Unramified Iwasawa Modules of the Maximal Multiple $\protect \mathbb{Z}_p$-Extensions Over Imaginary Quadratic Fields. Journal de théorie des nombres de Bordeaux, Volume 34 (2022) no. 3, pp. 881-902. doi : 10.5802/jtnb.1232. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1232/
[1] Prime decomposition in the anti-cyclotomic extensions, Math. Comput., Volume 76 (2007) no. 260, pp. 2127-2138 | DOI | Zbl
[2] Iwasawa invariant vanishes for abelian number fields, Ann. Math., Volume 109 (1979), pp. 377-395 | DOI | Zbl
[3] Pseudo-null submodules of the unramified Iwasawa module for -extensions, Interdiscip. Inf. Sci., Volume 16 (2010), pp. 55-66 | Zbl
[4] Iwasawa -invariants of imaginary quadratic fields, J. College Industrial Technology Nihon Univ., Volume 27 (1994), pp. 35-88
[5] The Iwasawa invariants of -extensions of a fixed number field, Am. J. Math., Volume 95 (1973), pp. 204-214 | DOI | Zbl
[6] On the isomorphism classes of Iwasawa modules associated to imaginary quadratic fields with , J. Math. Sci., Tokyo, Volume 6 (1999) no. 2, pp. 371-396 | Zbl
[7] On Brumer-Stark conjecture and Gross’ conjecture (Proceeding of the 20th Summer School on Number Theory — Stark’s conjecture, https://www.ma.noda.tus.ac.jp/u/ha/SS2012/Data/kurihara.pdf)
[8] Iwasawa theory and Fitting ideals, J. Reine Angew. Math., Volume 561 (2003), pp. 39-86 | Zbl
[9] Iwasawa modules for -extensions of algebraic number fields, Ph. D. Thesis, University of Washington (1986)
[10] Galois coinvariants of the unramified Iwasawa modules of multiple -extensions, Ann. Math., Volume 45 (2021) no. 2, pp. 407-431 | Zbl
[11] http://mizusawa.web.nitech.ac.jp/index.html)
([12] Finite free resolutions, Cambridge Tracts in Mathematics, 71, Cambridge University Press, 1976 | DOI
[13] PARI/GP version 2.13.2, 2021 (available from http://pari.math.u-bordeaux.fr/)
[14] Greenberg’s conjecture and the Iwasawa polynomial, J. Math. Soc. Japan, Volume 49 (1997) no. 4, pp. 689-711 | Zbl
[15] Introduction to cyclotomic fields, Graduate Texts in Mathematics, Springer, 1997 | DOI
Cited by Sources: