By constructing explicit examples, we show that the method of Quebbemann yields many isomorphism classes of extremal lattices of rank . Many of these examples have no non-trivial automorphisms.
En construisant des exemples explicites, nous montrons que la méthode de Quebbemann permet d’obtenir de nombreuses classes d’isomorphisme de réseaux extrémaux de dimension . Beaucoup de ces exemples n’ont pas d’automorphismes non triviaux.
Accepted:
Published online:
Keywords: extremal lattice
Ichiro Shimada 1

@article{JTNB_2022__34_3_813_0, author = {Ichiro Shimada}, title = {A note on {Quebbemann{\textquoteright}s} extremal lattices of rank $64$}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {813--826}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {34}, number = {3}, year = {2022}, doi = {10.5802/jtnb.1229}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1229/} }
TY - JOUR AU - Ichiro Shimada TI - A note on Quebbemann’s extremal lattices of rank $64$ JO - Journal de théorie des nombres de Bordeaux PY - 2022 SP - 813 EP - 826 VL - 34 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1229/ DO - 10.5802/jtnb.1229 LA - en ID - JTNB_2022__34_3_813_0 ER -
%0 Journal Article %A Ichiro Shimada %T A note on Quebbemann’s extremal lattices of rank $64$ %J Journal de théorie des nombres de Bordeaux %D 2022 %P 813-826 %V 34 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1229/ %R 10.5802/jtnb.1229 %G en %F JTNB_2022__34_3_813_0
Ichiro Shimada. A note on Quebbemann’s extremal lattices of rank $64$. Journal de théorie des nombres de Bordeaux, Volume 34 (2022) no. 3, pp. 813-826. doi : 10.5802/jtnb.1229. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1229/
[1] Positive definite unimodular lattices with trivial automorphism groups, Memoirs of the American Mathematical Society, 429, American Mathematical Society, 1990, 70 pages | Zbl
[2] Sphere packings, lattices and groups, Grundlehren der Mathematischen Wissenschaften, 290, Springer, 1999, lxxiv+703 pages | DOI
[3] GAP — Groups, Algorithms, and Programming, Version 4.11.0, 2020 (http://www.gap-system.org)
[4] Ternary code construction of unimodular lattices and self-dual codes over , J. Algebr. Comb., Volume 16 (2002) no. 2, pp. 209-223 | DOI | Zbl
[5] On the existence of extremal Type II -codes, Math. Comput., Volume 83 (2014) no. 287, pp. 1427-1446 | DOI | Zbl
[6] A construction of unimodular lattices without non-trivial automorphisms (a survey), RIMS Kokyuroku, Volume 1476 (2006), pp. 105-110
[7] Some cyclo-quaternionic lattices, J. Algebra, Volume 199 (1998) no. 2, pp. 472-498 | DOI | Zbl
[8] Definite unimodular -dimensional quadratic forms, Bull. Lond. Math. Soc., Volume 15 (1983), pp. 18-20 | DOI | Zbl
[9] An application of Siegel’s formula over quaternion orders, Mathematika, Volume 31 (1984), pp. 12-16 | DOI | Zbl
[10] A construction of integral lattices, Mathematika, Volume 31 (1984), pp. 137-140 | DOI
[11] An even extremal lattice of rank 64, J. Number Theory, Volume 185 (2018), pp. 1-15 | DOI | Zbl
[12] A note on Quebbemann’s extremal lattices of rank : computation data, 2021 (http://www.math.sci.hiroshima-u.ac.jp/shimada/lattice.html)
Cited by Sources: