Parmi les composantes connexes de l’intérieur de l’ensemble de Mandelbrot, on trouve celles qui sont hyperboliques. Ces composantes correspondent aux paramètres
Among the connected components of the interior of the Mandelbrot set are those that are hyperbolic. These components consist of parameters
Révisé le :
Accepté le :
Publié le :
Mots-clés : Mandelbrot set, hyperbolic component, Gleason polynomial
Xavier Buff 1 ; William Floyd 2 ; Sarah Koch 3 ; Walter Parry 4

@article{JTNB_2022__34_3_787_0, author = {Xavier Buff and William Floyd and Sarah Koch and Walter Parry}, title = {Factoring {Gleason} polynomials modulo 2}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {787--812}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {34}, number = {3}, year = {2022}, doi = {10.5802/jtnb.1228}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1228/} }
TY - JOUR AU - Xavier Buff AU - William Floyd AU - Sarah Koch AU - Walter Parry TI - Factoring Gleason polynomials modulo 2 JO - Journal de théorie des nombres de Bordeaux PY - 2022 SP - 787 EP - 812 VL - 34 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1228/ DO - 10.5802/jtnb.1228 LA - en ID - JTNB_2022__34_3_787_0 ER -
%0 Journal Article %A Xavier Buff %A William Floyd %A Sarah Koch %A Walter Parry %T Factoring Gleason polynomials modulo 2 %J Journal de théorie des nombres de Bordeaux %D 2022 %P 787-812 %V 34 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1228/ %R 10.5802/jtnb.1228 %G en %F JTNB_2022__34_3_787_0
Xavier Buff; William Floyd; Sarah Koch; Walter Parry. Factoring Gleason polynomials modulo 2. Journal de théorie des nombres de Bordeaux, Tome 34 (2022) no. 3, pp. 787-812. doi : 10.5802/jtnb.1228. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1228/
[1] Sur quelques problèmes de dynamique holomorphe, Ph. D. Thesis, Université de Paris-Sud, Orsay (1992)
[2] Prefixed curves in moduli space (2018) (https://arxiv.org/abs/1806.11221)
[3] A note on Misiurewicz polynomials, J. Théor. Nombres Bordeaux, Volume 32 (2020) no. 2, pp. 373-385 | DOI | Numdam | Zbl
[4] On the orbit of a post-critically finite polynomial of the form
[5] Counting stable cycles in unimodal iterations, Phys. Lett., A, Volume 131 (1988) no. 4, pp. 248-250 | DOI
[6] Counting hyperbolic components of the Mandelbrot set, Phys. Lett., A, Volume 177 (1993) no. 4, pp. 338-340 | DOI
[7] Arithmetic of unicritical polynomial maps, Frontiers in complex dynamics (Princeton Mathematical Series), Volume 51, Princeton University Press, 2012, pp. 15-23 | Zbl
[8] On iterated maps of the interval, Dynamical systems (Lecture Notes in Mathematics), Volume 1342, Springer, 1986, p. 1986-87
Cité par Sources :