Given a continuous, odd, semi-simple -dimensional representation of over a finite field of odd characteristic and a prime not dividing , we study the relation between the universal deformation rings of the corresponding pseudo-representations for the groups and . As a related problem, we investigate when the universal pseudo-representation arises from an actual representation over the universal deformation ring. Under some hypotheses, we prove analogues of theorems of Boston and Böckle for the reduced pseudo-deformation rings. We improve these results when the pseudo-representation is unobstructed and does not divide . When the pseudo-representation is unobstructed and divides , we prove that the universal deformation rings in characteristic and of the pseudo-representation for are not local complete intersection rings. As an application of our main results, we prove a big theorem.
Etant donnée une représentation continue, impaire et semi-simple de dimension de sur un corps fini de caractéristique impaire et un nombre premier ne divisant pas , nous étudions la relation entre les anneaux de déformation universels des pseudo-représentations correspondantes pour les groupes et . Nous nous intéressons aussi au problème connexe de savoir si la pseudo-représentation universelle provient d’une véritable représentation sur l’anneau de déformation universel. Sous certaines hypothèses, nous prouvons des analogues des théorèmes de Boston et Böckle pour les anneaux de pseudo-déformation réduits. Nous améliorons ces résultats dans le cas où la pseudo-représentation est non obstruée et ne divise pas . Lorsque la pseudo-représentation est non obstruée et divise , nous prouvons que les anneaux de déformation universels de la pseudo-représentation de en caractéristique et ne sont pas des anneaux locaux d’intersection complète. Comme application de nos résultats principaux, nous prouvons un théorème pour les algèbres de Hecke élargies et les anneaux de pseudo-représentations.
Revised:
Accepted:
Published online:
Mots-clés : pseudo-representations, deformation of Galois representations, structure of deformation rings
Shaunak V. Deo 1
@article{JTNB_2022__34_1_189_0, author = {Shaunak V. Deo}, title = {Effect of increasing the ramification on pseudo-deformation rings}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {189--236}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {34}, number = {1}, year = {2022}, doi = {10.5802/jtnb.1198}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1198/} }
TY - JOUR AU - Shaunak V. Deo TI - Effect of increasing the ramification on pseudo-deformation rings JO - Journal de théorie des nombres de Bordeaux PY - 2022 SP - 189 EP - 236 VL - 34 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1198/ DO - 10.5802/jtnb.1198 LA - en ID - JTNB_2022__34_1_189_0 ER -
%0 Journal Article %A Shaunak V. Deo %T Effect of increasing the ramification on pseudo-deformation rings %J Journal de théorie des nombres de Bordeaux %D 2022 %P 189-236 %V 34 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1198/ %R 10.5802/jtnb.1198 %G en %F JTNB_2022__34_1_189_0
Shaunak V. Deo. Effect of increasing the ramification on pseudo-deformation rings. Journal de théorie des nombres de Bordeaux, Volume 34 (2022) no. 1, pp. 189-236. doi : 10.5802/jtnb.1198. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1198/
[1] Pseudodeformations, Math. Z., Volume 270 (2012) no. 3-4, pp. 1163-1180 | DOI | MR | Zbl
[2] Image of pseudo-representations and coefficients of modular forms modulo , Adv. Math., Volume 353 (2019), pp. 647-721 | DOI | MR | Zbl
[3] Families of Galois representations and Selmer groups, Astérisque, 324, Société Mathématique de France, 2009, xii+314 pages | Numdam
[4] Level Hecke algebras of modular forms modulo , Compos. Math., Volume 151 (2015) no. 3, pp. 397-415 | DOI | MR | Zbl
[5] On the modularity of reducible Galois representations, Math. Res. Lett., Volume 23 (2016) no. 1, pp. 15-41 | DOI | Zbl
[6] Universal deformation rings need not be complete intersections, Math. Ann., Volume 337 (2007) no. 4, pp. 739-767 | DOI | MR | Zbl
[7] The generic fiber of the universal deformation space associated to a tame Galois representation, Manuscr. Math., Volume 96 (1998) no. 2, pp. 231-246 | MR | Zbl
[8] Explicit universal deformations of even Galois representations, Math. Nachr., Volume 206 (1999), pp. 85-110 | DOI | MR | Zbl
[9] A local-to-global principle for deformations of Galois representations, J. Reine Angew. Math., Volume 509 (1999), pp. 199-236 | DOI | MR | Zbl
[10] On the density of modular points in universal deformation spaces, Am. J. Math., Volume 123 (2001) no. 5, pp. 985-1007 | DOI | MR | Zbl
[11] Families of Galois representations - Increasing the ramification, Duke Math. J., Volume 66 (1992) no. 3, pp. 357-367 | MR | Zbl
[12] The -adic analytic space of pseudocharacters of a profinite group and pseudorepresentations over arbitrary rings, Automorphic forms and Galois representations (London Mathematical Society Lecture Note Series), Volume 414, Cambridge University Press, 2014, pp. 221-285 | DOI | MR | Zbl
[13] Structure of Hecke algebras of modular forms modulo , Algebra Number Theory, Volume 11 (2017) no. 1, pp. 1-38 | MR | Zbl
[14] On density of modular points in pseudo-deformation rings (2021) (https://arxiv.org/abs/2105.05823)
[15] Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics, 150, Springer, 1995
[16] -adic families of modular forms (after Hida, Coleman and Mazur), Séminaire Bourbaki. Volume 2009/2010 (Astérisque), Volume 339, Société Mathématique de France, 2011, pp. 1012-1026 | Numdam | Zbl
[17] Congruences between systems of eigenvalues of modular forms, Trans. Am. Math. Soc., Volume 270 (1982) no. 1, pp. 269-285 | DOI | MR | Zbl
[18] The Fontaine–Mazur conjecture for , J. Am. Math. Soc., Volume 22 (2009) no. 3, pp. 641-690 | DOI | MR | Zbl
[19] Deforming Galois representations, Galois groups over (Berkeley, CA, 1987) (Mathematical Sciences Research Institute Publications), Volume 16, Springer, 1987, pp. 385-437 | DOI
[20] On a Variation of Mazur’s deformation functor, Compos. Math., Volume 87 (1993) no. 3, pp. 269-286 | MR | Zbl
[21] Caractérisation des caractéres et pseudo-caractéres, J. Algebra, Volume 180 (1996) no. 2, pp. 571-586 | DOI | Zbl
[22] Relation between and Galois cohomology, Invent. Math., Volume 36 (1976), pp. 257-274 | DOI | MR | Zbl
[23] Presentations of non-commutative deformation rings via -algebras and applications to deformations of Galois representations and pseudorepresentations (2020) (https://arxiv.org/abs/1809.02484v2)
[24] Galois Cohomology, Modular forms and Fermat’s last theorem (Boston, 1995), Springer, 1997, pp. 101-120 | DOI | Zbl
[25] Non-optimal levels of a reducible mod modular representation, Trans. Am. Math. Soc., Volume 371 (2019) no. 6, pp. 3805-3830 | MR | Zbl
Cited by Sources: