On a bounded remainder set for a digital Kronecker sequence
Journal de théorie des nombres de Bordeaux, Tome 34 (2022) no. 1, pp. 163-187.

Soit x 0 ,x 1 ,... une suite de points dans [0,1) s . Un sous-ensemble S de [0,1) s est appelé un ensemble à restes bornés s’il existe un nombre réel C tel que, pour tout entier positif N,

| card {n<N:x n S}- mes (S)N|<C.

Soient (x n ) n0 une suite de Kronecker de dimension s en base b2 et γ=(γ 1 ,...,γ s ), où, pour i=1,...,s, le développement en base b de γ i [0,1), γ i =γ i,1 b -1 +γ i,2 b -2 +, vérifie γ i,j b-1 pour une infinité de j. Dans cet article, nous prouvons que [0,γ 1 )××[0,γ s ) est un ensemble à restes bornés relativement à la suite (x n ) n0 si et seulement si

max 1is sup{j1:γ i,j 0}<.

Nous obtenons ce résultat en conséquence d’un énoncé plus général donné dans la Proposition.

Let x 0 ,x 1 ,... be a sequence of points in [0,1) s . A subset S of [0,1) s is called a bounded remainder set if there exists a real number C such that, for every positive integer N,

| card {n<N:x n S}- meas (S)N|<C.

Let (x n ) n0 be an s-dimensional digital Kronecker sequence in base b2, γ=(γ 1 ,...,γ s ), γ i [0,1) with base-b expansion

γ i =γ i,1 b -1 +γ i,2 b -2 + for infinitely many γ i,j b-1, i=1,...,s. In this paper, we prove that [0,γ 1 )××[0,γ s ) is a bounded remainder set with respect to the sequence (x n ) n0 if and only if

max 1is sup{j1:γ i,j 0}<.

We get this result as a consequence of a more general statement given in the Proposition.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1197
Classification : 11K38
Mots clés : bounded remainder set, digital Kronecker sequence
Mordechay B. Levin 1

1 Department of Mathematics, Bar-Ilan University, Ramat-Gan, 5290002, Israel
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2022__34_1_163_0,
     author = {Mordechay B. Levin},
     title = {On a bounded remainder set for a digital {Kronecker} sequence},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {163--187},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {34},
     number = {1},
     year = {2022},
     doi = {10.5802/jtnb.1197},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1197/}
}
TY  - JOUR
AU  - Mordechay B. Levin
TI  - On a bounded remainder set for a digital Kronecker sequence
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2022
SP  - 163
EP  - 187
VL  - 34
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1197/
DO  - 10.5802/jtnb.1197
LA  - en
ID  - JTNB_2022__34_1_163_0
ER  - 
%0 Journal Article
%A Mordechay B. Levin
%T On a bounded remainder set for a digital Kronecker sequence
%J Journal de théorie des nombres de Bordeaux
%D 2022
%P 163-187
%V 34
%N 1
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1197/
%R 10.5802/jtnb.1197
%G en
%F JTNB_2022__34_1_163_0
Mordechay B. Levin. On a bounded remainder set for a digital Kronecker sequence. Journal de théorie des nombres de Bordeaux, Tome 34 (2022) no. 1, pp. 163-187. doi : 10.5802/jtnb.1197. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1197/

[1] Boris Adamczewski; Yann Bugeaud On the Littlewood conjecture in fields of power series, Probability and number theory - Kanazawa 2005 (Advanced Studies in Pure Mathematics), Volume 8, Mathematical Society of Japan, 2005, pp. 1-20 | Zbl

[2] Faustin Adiceam; Erez Nesharim; Fred Lunnon On the t-adic Littlewood Conjecture, Duke Math. J., Volume 170 (2021) no. 10, pp. 2371-2419 | MR | Zbl

[3] József Beck Probabilistic diophantine approximation. I: Kronecker sequences, Ann. Math., Volume 140 (1994) no. 1, pp. 109-160 | DOI | MR

[4] József Beck; William W. L. Chen Irregularities of Distribution,, Cambridge Tracts in Mathematics, 89, Cambridge University Press, 1987 | DOI

[5] Dmitriy Bilyk; Michael T. Lacey; Armen Vagharshakyan On the small ball inequality in all dimensions, J. Funct. Anal., Volume 254 (2008) no. 9, pp. 2470-2502 | DOI | MR | Zbl

[6] Josef Dick; Friedrich Pillichshammer Digital Nets and Sequences, Discrepancy Theory and Quasi-Monte Carlo Integration, Cambridge University Press, 2010 | DOI

[7] Sigrid Grepstad; Nir Lev Sets of bounded discrepancy for multi-dimensional irrational rotation, Geom. Funct. Anal., Volume 25 (2015) no. 1, pp. 87-133 | DOI | MR | Zbl

[8] Peter Hellekalek Regularities in the distribution of special sequences, J. Number Theory, Volume 18 (1984) no. 1, pp. 41-55 | DOI | MR | Zbl

[9] Peter Hellekalek General discrepancy estimates: the Walsh function system, Acta Arith., Volume 67 (1994) no. 3, pp. 209-218 | DOI | MR | Zbl

[10] Roswitha Hofer Kronecker-Halton sequences in 𝔽 p ((X -1 )), Finite Fields Appl., Volume 50 (2018), pp. 154-177 | DOI | MR | Zbl

[11] Gerhard Larcher On the distribution of an analog to classical Kronecker-sequences, J. Number Theory, Volume 52 (1995) no. 2, pp. 198-215 | DOI | MR | Zbl

[12] Gerhard Larcher Digital Point Sets: Analysis and Applications, Random and quasi-random point sets (Lecture Notes in Statistics), Volume 138, Springer, 1998, pp. 167-222 | DOI | MR | Zbl

[13] Gerhard Larcher Probabilistic Diophantine approximation and the distribution of Halton–Kronecker sequences, J. Complexity, Volume 29 (2013) no. 6, pp. 397-423 | DOI | MR | Zbl

[14] Gerhard Larcher; Harald Niederreiter Kronecker-type sequences and nonarchimedean Diophantine approximations, Acta Arith., Volume 63 (1993) no. 4, pp. 379-396 | DOI | Zbl

[15] Gerhard Larcher; Harald Niederreiter Generalized (t,s)-sequences, Kronecker-type sequences, and Diophantine approximations of formal Laurent series, Trans. Am. Math. Soc., Volume 347 (1995) no. 6, pp. 2051-2073 | MR | Zbl

[16] Gerhard Larcher; Friedrich Pillichshammer Metrical lower bounds on the discrepancy of digital Kronecker-sequences, J. Number Theory, Volume 135 (2014), pp. 262-283 | DOI | MR | Zbl

[17] Mordechay B. Levin On the lower bound in the lattice point remainder problem for a parallelepiped, Discrete Comput. Geom., Volume 54 (2015) no. 4, pp. 826-870 | DOI | MR | Zbl

[18] Mordechay B. Levin On the lower bound of the discrepancy of Halton’s sequences. I, C. R. Math. Acad. Sci. Paris, Volume 354 (2016) no. 5, pp. 445-448 | DOI | MR

[19] Mordechay B. Levin On the lower bound of the discrepancy of (t,s)-sequences. I., C. R. Math. Acad. Sci. Paris, Volume 354 (2016) no. 6, pp. 562-565 | DOI | MR | Zbl

[20] Mordechay B. Levin On a bounded remainder set for (t,s)-sequences. I, Chebyshevskiĭ Sb., Volume 20 (2019) no. 1, pp. 222-246 | DOI

[21] Rudolf Lidl; Harald Niederreiter Introduction to Finite Fields and their Applications, Cambridge University Press, 1994 | DOI

[22] Harald Niederreiter Random Number generation and quasi-Monte Carlo methods, CBMS-NSF Regional Conference Series in Applied Mathematics, 63, Society for Industrial and Applied Mathematics, 1992 | DOI

[23] Maxim M. Skriganov Construction of uniform distributions in terms of geometry of numbers, Algebra Anal., Volume 6 (1994) no. 3, pp. 200-230 | MR | Zbl

[24] Donald C. Spencer The lattice points of tetrahedra, J. Math. Phys., Volume 21 (1942), pp. 189-197 | DOI | MR | Zbl

Cité par Sources :