It is well-known that the Hasse principle holds for quadric hypersurfaces. The Hasse principle fails for integral points on smooth quadric hypersurfaces of dimension 2 but the failure can be completely accounted for by the Brauer–Manin obstruction. We investigate how often the family of quadric hypersurfaces has a Brauer–Manin obstruction where are integers. We improve previous bounds of Mitankin [7].
Il est bien connu que le principe de Hasse est valable pour les hypersurfaces quadratiques. Le principe de Hasse échoue pour les points entiers sur les hypersurfaces quadratiques lisses de dimension 2, mais cet échec peut être complètement expliqué par l’obstruction de Brauer–Manin. Nous étudions à quelle fréquence la famille d’hypersurfaces quadratiques a une obstruction de Brauer–Manin, où sont des entiers. Nous améliorons les éstimations précédentes de Mitankin [7].
Revised:
Accepted:
Published online:
Keywords: Brauer–Manin obstruction, integral point, quadric surface
@article{JTNB_2022__34_1_141_0, author = {Tim Santens}, title = {Integral points on affine quadric surfaces}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {141--161}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {34}, number = {1}, year = {2022}, doi = {10.5802/jtnb.1196}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1196/} }
TY - JOUR AU - Tim Santens TI - Integral points on affine quadric surfaces JO - Journal de théorie des nombres de Bordeaux PY - 2022 SP - 141 EP - 161 VL - 34 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1196/ DO - 10.5802/jtnb.1196 LA - en ID - JTNB_2022__34_1_141_0 ER -
%0 Journal Article %A Tim Santens %T Integral points on affine quadric surfaces %J Journal de théorie des nombres de Bordeaux %D 2022 %P 141-161 %V 34 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1196/ %R 10.5802/jtnb.1196 %G en %F JTNB_2022__34_1_141_0
Tim Santens. Integral points on affine quadric surfaces. Journal de théorie des nombres de Bordeaux, Volume 34 (2022) no. 1, pp. 141-161. doi : 10.5802/jtnb.1196. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1196/
[1] Brauer–Manin obstruction for integral points of homogeneous spaces and representation by integral quadratic forms, Compos. Math., Volume 145 (2009) no. 2, pp. 309-363 (With an appendix by Dasheng Wei and Xu) | DOI | MR | Zbl
[2] Multiplicative number theory, Graduate Texts in Mathematics, 74, Springer, 1980, xiii+177 pages (Revised by Hugh L. Montgomery) | DOI | MR
[3] Ternary quadratic forms with rational zeros, J. Théor. Nombres Bordeaux, Volume 22 (2010) no. 1, pp. 97-113 | DOI | Numdam | MR | Zbl
[4] Le groupe de Brauer. I, II, III, Dix exposés sur la cohomologie des schémas (Advanced Studies in Pure Mathematics), Volume 3, North-Holland, 1968, pp. 1-188 | Zbl
[5] Darstellungsmasse indefiniter quadratischer Formen, Math. Z., Volume 77 (1961), pp. 188-194 | DOI | MR | Zbl
[6] Hilbert’s tenth problem, Foundations of Computing Series, MIT Press, 1993, xxiv+264 pages (Translated from the 1993 Russian original by the author, With a foreword by Martin Davis) | MR
[7] Failures of the integral Hasse principle for affine quadric surfaces, J. Lond. Math. Soc., Volume 95 (2017) no. 3, pp. 1035-1052 | DOI | MR | Zbl
[8] On the Phragmén–Lindelöf theorem and some applications, Math. Z., Volume 72 (1959/1960), pp. 192-204 | DOI | MR | Zbl
[9] A course in arithmetic, Graduate Texts in Mathematics, 7, Springer, 1973, viii+115 pages (Translated from the French) | DOI | MR
[10] Torsors and rational points, Cambridge Tracts in Mathematics, 144, Cambridge University Press, 2001, viii+187 pages | DOI | MR
[11] Introduction to analytic and probabilistic number theory, Cambridge Studies in Advanced Mathematics, 46, Cambridge University Press, 1995, xvi+448 pages Translated from the second French edition (1995) by C. B. Thomas | MR
[12] The probability that positive integers are pairwise relatively prime, Fibonacci Q., Volume 40 (2002) no. 1, pp. 13-18 | MR | Zbl
[13] Multiplicative arithmetic functions of several variables: a survey, Mathematics without boundaries, Springer, 2014, pp. 483-514 | MR | Zbl
Cited by Sources: