Let be a positive integer and let be an elliptic curve over with the property that for a density set of primes . Building upon work of Katz and Harron–Snowden, we study the probability that : we find it is nonzero for all and we compute it exactly when . As a supplement, we give an asymptotic count of elliptic curves with extra level structure when the parametrizing modular curve arises from the quotient by a torsion-free group of genus zero.
Soit un entier positif et soit une courbe elliptique sur telle que pour un ensemble de densité de nombres premiers . En nous appuyant sur les travaux de Katz et Harron–Snowden, nous étudions la probabilité que : nous trouvons qu’elle est non nulle pour tout et nous la calculons explicitement pour . En complément, nous donnons un comptage asymptotique des courbes elliptiques avec une structure de niveau supplémentaire lorsque la courbe modulaire paramétrant ces structures provient du quotient par un groupe sans torsion de genre zéro.
Revised:
Accepted:
Published online:
Keywords: Elliptic curves, torsion subgroups, arithmetic statistics
@article{JTNB_2022__34_1_41_0, author = {John Cullinan and Meagan Kenney and John Voight}, title = {On a probabilistic local-global principle for torsion on elliptic curves}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {41--90}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {34}, number = {1}, year = {2022}, doi = {10.5802/jtnb.1193}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1193/} }
TY - JOUR AU - John Cullinan AU - Meagan Kenney AU - John Voight TI - On a probabilistic local-global principle for torsion on elliptic curves JO - Journal de théorie des nombres de Bordeaux PY - 2022 SP - 41 EP - 90 VL - 34 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1193/ DO - 10.5802/jtnb.1193 LA - en ID - JTNB_2022__34_1_41_0 ER -
%0 Journal Article %A John Cullinan %A Meagan Kenney %A John Voight %T On a probabilistic local-global principle for torsion on elliptic curves %J Journal de théorie des nombres de Bordeaux %D 2022 %P 41-90 %V 34 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1193/ %R 10.5802/jtnb.1193 %G en %F JTNB_2022__34_1_41_0
John Cullinan; Meagan Kenney; John Voight. On a probabilistic local-global principle for torsion on elliptic curves. Journal de théorie des nombres de Bordeaux, Volume 34 (2022) no. 1, pp. 41-90. doi : 10.5802/jtnb.1193. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1193/
[1] Computing classical modular forms for arbitrary congruence subgroups, Arithmetic Geometry, Number Theory, and Computation (Simons Symposia), 2021, pp. 43-104 | DOI
[2] Normalizers of non-split Cartan subgroups, modular curves, and the class number one problem, J. Number Theory, Volume 130 (2010) no. 12, pp. 2753-2772 | DOI | MR | Zbl
[3] Binary quartic forms having bounded invariants, and the boundedness of the average rank of elliptic curves, Ann. Math., Volume 181 (2015) no. 1, pp. 191-242 | DOI | MR | Zbl
[4] Counting elliptic curves with a rational -isogeny for small (2020) (https://arxiv.org/abs/2009.05223)
[5] The Magma algebra system. I. The user language, J. Symb. Comput., Volume 24 (1997) no. 3-4, pp. 235-265 | DOI | MR | Zbl
[6] Counting elliptic curves with prescribed level structures over number fields (2021) (https://arxiv.org/abs/2008.05280)
[7] A classification of isogeny-torsion graphs of elliptic curves over , Trans. Lond. Math. Soc., Volume 8 (2021) no. 1, pp. 1-34 | DOI
[8] Probabilistic behaviors of elliptic curves with torsion points (2020) (https://arxiv.org/abs/2005.06862)
[9] Using algebraic geometry, Graduate Texts in Mathematics, 185, Springer, 2005
[10] Universal polynomials for -full torsion groups, 2020 (available at http://math.dartmouth.edu/~jvoight/code/compute_universal.m)
[11] On a principle of Lipschitz, J. Lond. Math. Soc., Volume 26 (1951), pp. 179-183 | DOI | MR | Zbl
[12] Les schémas de modules de courbes elliptiques, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) (Lecture Notes in Mathematics), Volume 349, Springer, 1972, pp. 143-316 | Zbl
[13] A first course in modular forms, Graduate Texts in Mathematics, 228, Springer, 2005
[14] Heights on stacks and a generalized Batyrev–Manin–Malle conjecture (2021) (https://arxiv.org/abs/2106.11340v1)
[15] A complete Diophantine characterization of the rational torsion of an elliptic curve, Acta Math. Sin., Engl. Ser., Volume 28 (2012) no. 1, pp. 83-96 | DOI | MR | Zbl
[16] The image of Galois representations attached to elliptic curves with an isogeny, Am. J. Math., Volume 134 (2012) no. 5, pp. 1167-1196 | DOI | MR | Zbl
[17] Counting elliptic curves with prescribed torsion, J. Reine Angew. Math., Volume 729 (2017), pp. 151-170 | MR | Zbl
[18] Exponential sums and lattice points III, Proc. Lond. Math. Soc., Volume 87 (2003) no. 3, pp. 591-609 | DOI | MR | Zbl
[19] Galois properties of torsion points on abelian varieties, Invent. Math., Volume 62 (1981), pp. 481-502 | DOI | MR | Zbl
[20] Arithmetic moduli of elliptic curves, Annals of Mathematics Studies, 108, Princeton University Press, 1985 | DOI
[21] On lifting Kleinian groups to , Differential geometry and complex analysis, Springer, 1985, pp. 181-193 | Zbl
[22] The L-functions and Modular Forms Database, 2020 (http://www.lmfdb.org, accessed 28 June 2020)
[23] Modular curves and the Eisenstein ideal, Publ. Math., Inst. Hautes Étud. Sci., Volume 47 (1977), pp. 33-186 | DOI | Numdam | Zbl
[24] Counting elliptic curves with an isogeny of degree three, Proc. Am. Math. Soc., Volume 7 (2020), pp. 28-42 | DOI | MR | Zbl
[25] Elliptic curves with Galois-stable cyclic subgroups of order 4, Res. Number Theory, Volume 7 (2021) no. 2, 35, 19 pages | MR | Zbl
[26] Classification of torsion-free genus zero congruence groups, Proc. Am. Math. Soc., Volume 129 (2001) no. 9, pp. 2517-2527 | DOI | MR | Zbl
[27] Lectures on the Mordell-Weil theorem, Aspects of Mathematics, E15, Vieweg & Sohn, 1997 | DOI
[28] Abelian -adic representations and elliptic curves, Research Notes in Mathematics, 7, A K Peters, 1998
[29] Introduction to the arithmetic theory of automorphic functions, Kanô Memorial Lectures, 11, Princeton University Press, 1994
[30] Modular curves of prime-power level with infinitely many rational points, Algebra Number Theory, Volume 11 (2017) no. 5, pp. 1199-1229 | MR | Zbl
[31] Isogénies entre courbes elliptiques, C. R. Acad. Sci. Paris, Volume 273 (1971) | Zbl
[32] The canonical ring of a stacky curve (to appear in Mem. Amer. Math. Soc.)
[33] Possible indices for the Galois image of elliptic curves over (2015) (https://arxiv.org/abs/1508.07663)
Cited by Sources: