Des bornes explicites pour la fonction zêta
Nous suivons deux approches, chacune donnant le meilleur ré-sultat dans un certain rang. La première est inspirée par le théo-rème de la valeur moyenne pour les polynômes de Dirichlet. La deuxième, supérieure pour T grand, est basée sur des résultats classiques, en commençant par une approximation de
Ces bornes donnent toutes les deux des termes principaux d’or-dre correct pour
Nous présentons aussi des bornes pour la norme
Explicit bounds on the tails of the zeta function
Two approaches are followed, each giving the better result on a different range. The first one is inspired by the proof of the standard mean value theorem for Dirichlet polynomials. The second approach, superior for large
Both bounds give main terms of the correct order for
We also present bounds for the
Révisé le :
Accepté le :
Publié le :
Mots-clés : Riemann zeta function,
Daniele Dona 1 ; Harald A. Helfgott 1 ; Sebastian Zuniga Alterman 2

@article{JTNB_2022__34_1_91_0, author = {Daniele Dona and Harald A. Helfgott and Sebastian Zuniga Alterman}, title = {Explicit $L^2$ bounds for the {Riemann} $\zeta $ function}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {91--133}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {34}, number = {1}, year = {2022}, doi = {10.5802/jtnb.1194}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1194/} }
TY - JOUR AU - Daniele Dona AU - Harald A. Helfgott AU - Sebastian Zuniga Alterman TI - Explicit $L^2$ bounds for the Riemann $\zeta $ function JO - Journal de théorie des nombres de Bordeaux PY - 2022 SP - 91 EP - 133 VL - 34 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1194/ DO - 10.5802/jtnb.1194 LA - en ID - JTNB_2022__34_1_91_0 ER -
%0 Journal Article %A Daniele Dona %A Harald A. Helfgott %A Sebastian Zuniga Alterman %T Explicit $L^2$ bounds for the Riemann $\zeta $ function %J Journal de théorie des nombres de Bordeaux %D 2022 %P 91-133 %V 34 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1194/ %R 10.5802/jtnb.1194 %G en %F JTNB_2022__34_1_91_0
Daniele Dona; Harald A. Helfgott; Sebastian Zuniga Alterman. Explicit $L^2$ bounds for the Riemann $\zeta $ function. Journal de théorie des nombres de Bordeaux, Tome 34 (2022) no. 1, pp. 91-133. doi : 10.5802/jtnb.1194. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1194/
[1] Handbook of mathematical functions with formulas, graphs, and mathematical tables. 10th printing, with corrections (Milton Abramowitz; Irene A. Stegun, eds.), National Bureau of Standards Applied Mathematics Series, John Wiley & Sons, 1972 | DOI | Zbl
[2] Special Functions, Encyclopedia of Mathematics and Its Applications, 71, Cambridge University Press, 1999 | DOI
[3] The mean value of the Riemann zeta function, Acta Math., Volume 81 (1949), pp. 353-376 | DOI | MR | Zbl
[4] Über die Nullstellen der Riemannschen Zetafunktion, Acta Math., Volume 41 (1918), pp. 345-375 | DOI | Zbl
[5] An improvement on a theorem of Titchmarsh on the mean square of
[6] Einführung in die analytische Zahlentheorie, Springer, 1995 | DOI
[7] Explicit estimates for the Riemann zeta function, Rocky Mt. J. Math., Volume 34 (2004) no. 4, pp. 1261-1280 | MR | Zbl
[8] Vinogradov’s integral and bounds for the Riemann zeta function, Proc. Lond. Math. Soc., Volume 85 (2002) no. 3, pp. 565-633 | DOI | MR | Zbl
[9] Ein
[10] Contributions to the theory of the Riemann zeta-function and the theory of the distribution of primes, Acta Math., Volume 41 (1918), pp. 119-196 | DOI | MR
[11] The zeros of Riemann’s zeta-function on the critical line, Math. Z., Volume 10 (1921), pp. 283-317 | DOI | MR | Zbl
[12] The approximate functional equation in the theory of the Zeta-function, with applications to the divisor problems of Dirichlet and Piltz, Proc. Lond. Math. Soc., Volume 21 (1922), pp. 39-74 | MR | Zbl
[13] The mean value theorem for the Riemann zeta-function, Mathematika (1978), pp. 177-184 | DOI | MR
[14] The ternary Goldbach conjecture to appear in Annals of Mathematics Studies, https://webusers.imj-prg.fr/~harald.helfgott/anglais/book.html (version 09/2019)
[15] An explicit van der Corput estimate for
[16] Mean-value theorems in the theory of the Riemann zeta-function, Proc. Lond. Math. Soc., Volume 27 (1928), pp. 273-300 | DOI | MR
[17] Analytic number theory, Colloquium Publications, 53, American Mathematical Society, 2004
[18] Numerical integration in arbitrary-precision ball arithmetic, Mathematical software – ICMS 2018 (Lecture Notes in Computer Science), Volume 10931, Springer, 2018, pp. 255-263 | DOI | Zbl
[19] A zero density result for the Riemann zeta function, Acta Arith., Volume 160 (2013) no. 2, pp. 185-200 | DOI | MR | Zbl
[20] Handbuch der Lehre von der Verteilung der Primzahlen, Teubner, 1909
[21] On the principal term in the divisor problem and the power series of the Riemann zeta-function in a neighborhood of its pole, Proc. Steklov Inst. Math., Volume 142 (1976), pp. 165-173 (in Russian)
[22] On the distribution of zeros of the Riemann zeta-function, Proc. Lond. Math. Soc., Volume 20 (1970) no. 2, pp. 303-320 | DOI | MR | Zbl
[23] On the zeros of the Riemann zeta-function, Cambr. Phil. Soc. Proc., Volume 22 (1924), pp. 295-318 | DOI | Zbl
[24] The mean square of the Riemann zeta-function in the critical strip, Jap. J. Math., New Ser., Volume 15 (1989) no. 1, pp. 1-13 | DOI | MR | Zbl
[25] Recent Developments in the Mean Square Theory of the Riemann Zeta and Other Zeta-Functions, Number theory (Trends in Mathematics), Birkhäuser, 2000, pp. 241-286 | DOI | Zbl
[26] The mean square of the Riemann zeta-function in the critical strip III, Acta Arith., Volume 64 (1993) no. 4, pp. 357-382 | DOI | MR | Zbl
[27] Topics in Multiplicative Number Theory, Lecture Notes in Mathematics, 227, Springer, 1971 | DOI
[28] Hilbert’s Inequality, J. Lond. Math. Soc., Volume 8 (1974) no. 2, pp. 73-81 | DOI | MR | Zbl
[29] Multiplicative number theory: I. Classical theory, Cambridge Studies in Advanced Mathematics, 97, Cambridge University Press, 2007
[30] An improved explicit bound on
[31] Sur une inégalité de Montgomery–Vaughan, Enseign. Math., Volume 30 (1984), pp. 95-113 | MR | Zbl
[32] An explicit density estimate for Dirichlet
[33] Explicit averages of non-negative multiplicative functions: going beyond the main term, Colloq. Math., Volume 147 (2017) no. 2, pp. 275-313 | DOI | MR | Zbl
[34] Classical Topics in Complex Function Theory, Graduate Texts in Mathematics, 172, Springer, 1998 | DOI
[35] Explicit zero density estimate for the Riemann zeta-function near the critical line, J. Math. Anal. Appl., Volume 491 (2020) no. 1, 124303, 40 pages | MR | Zbl
[36] On van der Corput’s method and the zeta-function of Riemann. V, Q. J. Math, Volume 5 (1934), pp. 195-210 | DOI | Zbl
[37] The theory of the Riemann Zeta-function, Oxford Science Publications, Clarendon Press, 1986
- Atkinson's formula for the mean square of
with an explicit error term, Journal of Number Theory, Volume 244 (2023), pp. 111-168 | DOI:10.1016/j.jnt.2022.09.010 | Zbl:1509.11081 - Explicit bounds for products of primes in AP, Mathematics of Computation, Volume 92 (2023) no. 343, pp. 2381-2411 | DOI:10.1090/mcom/3853 | Zbl:1535.11129
- On the Atkinson formula for the
function, Journal of Mathematical Analysis and Applications, Volume 516 (2022) no. 2, p. 34 (Id/No 126478) | DOI:10.1016/j.jmaa.2022.126478 | Zbl:1512.11062
Cité par 3 documents. Sources : zbMATH