Energy Minimization Principle for non-archimedean curves
Journal de théorie des nombres de Bordeaux, Volume 34 (2022) no. 1, pp. 1-39.

Baker and Rumely defined a notion of Arakelov–Green’s functions on the Berkovich analytification of the projective line and established an Energy Minimization Principle. We extend their definition and show their Energy Minimization Principle for general smooth projective curves. As an application we get a generalization and a different proof of an equidistribution result by Baker and Petsche.

Baker et Rumely ont défini la notion de fonction d’Arakelov–Green sur la droite projective analytifiée au sens de Berkovich et ont établi un principe de minimisation de l’énergie pour ces fonctions. Nous étendons leur définition et démontrons leur principe de minimisation de l’énergie pour les courbes projectives lisses générales. Comme application, nous obtenons une généralisation et une nouvelle démonstration d’un résultat d’équidistribution de Baker et Petsche.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/jtnb.1192
Classification: 32P05, 14G22, 14T05, 32U05, 32U40
Keywords: Potential theory, Berkovich spaces, Equidistribution
Veronika Wanner 1

1 Mathematik, Universität Regensburg 93040 Regensburg, Germany
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{JTNB_2022__34_1_1_0,
     author = {Veronika Wanner},
     title = {Energy {Minimization} {Principle} for non-archimedean curves},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {1--39},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {34},
     number = {1},
     year = {2022},
     doi = {10.5802/jtnb.1192},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1192/}
}
TY  - JOUR
AU  - Veronika Wanner
TI  - Energy Minimization Principle for non-archimedean curves
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2022
SP  - 1
EP  - 39
VL  - 34
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1192/
DO  - 10.5802/jtnb.1192
LA  - en
ID  - JTNB_2022__34_1_1_0
ER  - 
%0 Journal Article
%A Veronika Wanner
%T Energy Minimization Principle for non-archimedean curves
%J Journal de théorie des nombres de Bordeaux
%D 2022
%P 1-39
%V 34
%N 1
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1192/
%R 10.5802/jtnb.1192
%G en
%F JTNB_2022__34_1_1_0
Veronika Wanner. Energy Minimization Principle for non-archimedean curves. Journal de théorie des nombres de Bordeaux, Volume 34 (2022) no. 1, pp. 1-39. doi : 10.5802/jtnb.1192. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1192/

[1] Matthew Baker; Sam Payne; Joseph Rabinoff On the structure of non-Archimedean analytic curves, Tropical and non-Archimedean geometry (Contemporary Mathematics), Volume 605, American Mathematical Society, 2013, pp. 93-121 | DOI | MR | Zbl

[2] Matthew Baker; Sam Payne; Joseph Rabinoff Nonarchimedean geometry, tropicalization, and metrics on curves, Algebr. Geom., Volume 3 (2016) no. 1, pp. 63-105 | DOI | MR | Zbl

[3] Matthew Baker; Clayton Petsche Global discrepancy and small points on elliptic curves, Int. Math. Res. Not., Volume 2005 (2005) no. 61, pp. 3791-3834 | DOI | MR | Zbl

[4] Matthew Baker; Robert Rumely Equidistribution of small points, rational dynamics, and potential theory, Ann. Inst. Fourier, Volume 56 (2006) no. 3, pp. 625-688 | DOI | Numdam | MR | Zbl

[5] Matthew Baker; Robert Rumely Potential theory and dynamics on the Berkovich projective line, Mathematical Surveys and Monographs, 159, American Mathematical Society, 2010 | DOI

[6] Vladimir G. Berkovich Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monographs, 33, American Mathematical Society, 1990 | MR

[7] Antoine Chambert-Loir; Antoine Ducros Formes différentielles réelles et courants sur les espaces de Berkovich (2010) (https://arxiv.org/abs/1204.6277)

[8] Charles Favre; Mattias Jonsson The valuative tree, Lecture Notes in Mathematics, 1853, Springer, 2004 | DOI

[9] Charles Favre; Juan Rivera-Letelier Equidistribution quantitative des points de petite hauteur sur la droite projective, Math. Ann., Volume 335 (2006) no. 2, pp. 311-361 | DOI | Zbl

[10] Gerald B. Folland Real analysis, Pure and Applied Mathematics, John Wiley & Sons, 1999

[11] Clayton Petsche Nonarchimedean equidistribution on elliptic curves with global applications, Pac. J. Math., Volume 242 (2009) no. 2, pp. 345-375 | DOI | MR | Zbl

[12] Joseph H. Silverman Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, 151, Springer, 1994 | DOI

[13] Amaury Thuillier Théorie du potentiel sur les courbes en géométrie analytique non archimédienne. Applications à la théorie d’ Arakelov, Ph. D. Thesis, Université de Rennes 1 (France) (2005)

[14] Veronika Wanner Comparison of two notions of subharmonicity on non-archimedean curves, Math. Z., Volume 293 (2018) no. 1-2, pp. 443-474 | DOI | MR | Zbl

[15] Veronika Wanner Subharmonic functions and differential forms on non-archimedean curves, Ph. D. Thesis, University of Regensburg (Germany) (2019) (https://epub.uni-regensburg.de/40530/1/THESIS.pdf)

Cited by Sources: