We prove the existence of Euler systems for -ordinary adjoint modular Galois representations using deformations of Galois representations coming from -ordinary Hilbert modular forms, and relate them to -adic -functions under a conjectural formula for the Fitting ideals of some equivariant congruence modules for abelian base change.
Nous prouvons l’existence de systèmes d’Euler pour les représentations galoisiennes modulaires adjointes -ordinaires en utilisant les déformations de représentations galoisiennes provenant de formes modulaires -ordinaires de Hilbert et nous leurs associons des fonctions L -adiques via une formule conjecturale pour l’idéal de Fitting d’un module de congruences équivariant pour le changement de base abélien.
Revised:
Accepted:
Published online:
Keywords: Euler systems, Deformation, Galois representations, Hecke algebra, Hida Theory
@article{JTNB_2021__33_3.2_1115_0, author = {Eric Urban}, title = {On {Euler} systems for adjoint {Hilbert} modular {Galois} representations}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {1115--1141}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {33}, number = {3.2}, year = {2021}, doi = {10.5802/jtnb.1191}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1191/} }
TY - JOUR AU - Eric Urban TI - On Euler systems for adjoint Hilbert modular Galois representations JO - Journal de théorie des nombres de Bordeaux PY - 2021 SP - 1115 EP - 1141 VL - 33 IS - 3.2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1191/ DO - 10.5802/jtnb.1191 LA - en ID - JTNB_2021__33_3.2_1115_0 ER -
%0 Journal Article %A Eric Urban %T On Euler systems for adjoint Hilbert modular Galois representations %J Journal de théorie des nombres de Bordeaux %D 2021 %P 1115-1141 %V 33 %N 3.2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1191/ %R 10.5802/jtnb.1191 %G en %F JTNB_2021__33_3.2_1115_0
Eric Urban. On Euler systems for adjoint Hilbert modular Galois representations. Journal de théorie des nombres de Bordeaux, Volume 33 (2021) no. 3.2, pp. 1115-1141. doi : 10.5802/jtnb.1191. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1191/
[1] On Ihara’s lemma for Hilbert Modular Varieties, Compos. Math., Volume 145 (2009) no. 5, pp. 1114-1146 | DOI | MR | Zbl
[2] On the structure of Selmer groups, Elliptic Curves, Modular Forms and Iwasawa Theory (Springer Proceedings in Mathematics & Statistics), Volume 188, Springer, 2016, pp. 225-252 | DOI | MR | Zbl
[3] On the Iwasawa invariants of Elliptic Curves, Invent. Math., Volume 142 (2000) no. 1, pp. 17-63 | DOI | MR | Zbl
[4] Congruences of cusp forms and special values of their zeta functions, Invent. Math., Volume 63 (1981), pp. 225-261 | DOI | MR | Zbl
[5] -adic -functions for base change lifts of to , Automorphic forms, Shimura varieties, and L-functions. Vol. II (Ann Arbor, MI, 1988) (Perspectives in Mathematics), Volume 11, Academic Press Inc., 1988, pp. 93-142 | MR | Zbl
[6] Adjoint Selmer groups as Iwasawa modules, Isr. J. Math., Volume 120 (2000), pp. 361-427 | DOI | MR | Zbl
[7] Control Theorems of Coherent Sheaves on Shimura Varieties of PEL-type, J. Inst. Math. Jussieu, Volume 1 (2002) no. 1, pp. 1-76 | MR | Zbl
[8] Euler systems, The Grothendieck Festschrift, Vol. II (Progress in Mathematics), Volume 87, Birkhäuser, 1990, pp. 435-483 | MR | Zbl
[9] Systèmes d’Euler -adiques et théorie d’Iwasawa, Ann. Inst. Fourier, Volume 48 (1998) no. 5, pp. 1231-1307 | DOI | Numdam | Zbl
[10] Stark units and Kolyvagin’s Euler systems, J. Reine Angew. Math., Volume 425 (1992), pp. 141-154 | MR | Zbl
[11] Euler systems, Annals of Mathematics Studies, 147, Institute for Advanced Study, 2000 | DOI
[12] Integral period relations and base change (to appear in Algebra Number Theory)
[13] Euler systems and Eisenstein congruences (2020) (preprint)
[14] On ordinary -adic representations associated to modular forms, Invent. Math., Volume 94 (1988) no. 3, pp. 529-573 | DOI | MR
[15] Modular Elliptic Curves and Fermat’s Last Theorem, Ann. Math., Volume 141 (1995) no. 3, pp. 443-551 | DOI | MR | Zbl
Cited by Sources: