On Euler systems for adjoint Hilbert modular Galois representations
Journal de théorie des nombres de Bordeaux, Volume 33 (2021) no. 3.2, pp. 1115-1141.

We prove the existence of Euler systems for p-ordinary adjoint modular Galois representations using deformations of Galois representations coming from p-ordinary Hilbert modular forms, and relate them to p-adic L-functions under a conjectural formula for the Fitting ideals of some equivariant congruence modules for abelian base change.

Nous prouvons l’existence de systèmes d’Euler pour les représentations galoisiennes modulaires adjointes p-ordinaires en utilisant les déformations de représentations galoisiennes provenant de formes modulaires p-ordinaires de Hilbert et nous leurs associons des fonctions L p-adiques via une formule conjecturale pour l’idéal de Fitting d’un module de congruences équivariant pour le changement de base abélien.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/jtnb.1191
Classification: 11F80,  11F33,  11F41
Keywords: Euler systems, Deformation, Galois representations, Hecke algebra, Hida Theory
Eric Urban 1

1 Department of Mathematics Columbia University 2990 Broadway New York, NY 10027, USA
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{JTNB_2021__33_3.2_1115_0,
     author = {Eric Urban},
     title = {On {Euler} systems for adjoint {Hilbert} modular {Galois} representations},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {1115--1141},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {33},
     number = {3.2},
     year = {2021},
     doi = {10.5802/jtnb.1191},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1191/}
}
TY  - JOUR
AU  - Eric Urban
TI  - On Euler systems for adjoint Hilbert modular Galois representations
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2021
DA  - 2021///
SP  - 1115
EP  - 1141
VL  - 33
IS  - 3.2
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1191/
UR  - https://doi.org/10.5802/jtnb.1191
DO  - 10.5802/jtnb.1191
LA  - en
ID  - JTNB_2021__33_3.2_1115_0
ER  - 
%0 Journal Article
%A Eric Urban
%T On Euler systems for adjoint Hilbert modular Galois representations
%J Journal de théorie des nombres de Bordeaux
%D 2021
%P 1115-1141
%V 33
%N 3.2
%I Société Arithmétique de Bordeaux
%U https://doi.org/10.5802/jtnb.1191
%R 10.5802/jtnb.1191
%G en
%F JTNB_2021__33_3.2_1115_0
Eric Urban. On Euler systems for adjoint Hilbert modular Galois representations. Journal de théorie des nombres de Bordeaux, Volume 33 (2021) no. 3.2, pp. 1115-1141. doi : 10.5802/jtnb.1191. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1191/

[1] Mladen Dimitrov On Ihara’s lemma for Hilbert Modular Varieties, Compos. Math., Volume 145 (2009) no. 5, pp. 1114-1146 | DOI | MR | Zbl

[2] Ralph Greenberg On the structure of Selmer groups, Elliptic Curves, Modular Forms and Iwasawa Theory (Springer Proceedings in Mathematics & Statistics), Volume 188, Springer, 2016, pp. 225-252 | DOI | MR | Zbl

[3] Ralph Greenberg; Vinayak Vatsal On the Iwasawa invariants of Elliptic Curves, Invent. Math., Volume 142 (2000) no. 1, pp. 17-63 | DOI | MR | Zbl

[4] Haruzo Hida Congruences of cusp forms and special values of their zeta functions, Invent. Math., Volume 63 (1981), pp. 225-261 | DOI | MR | Zbl

[5] Haruzo Hida p-adic L-functions for base change lifts of GL 2 to GL 3 , Automorphic forms, Shimura varieties, and L-functions. Vol. II (Ann Arbor, MI, 1988) (Perspectives in Mathematics), Volume 11, Academic Press Inc., 1988, pp. 93-142 | MR | Zbl

[6] Haruzo Hida Adjoint Selmer groups as Iwasawa modules, Isr. J. Math., Volume 120 (2000), pp. 361-427 | DOI | MR | Zbl

[7] Haruzo Hida Control Theorems of Coherent Sheaves on Shimura Varieties of PEL-type, J. Inst. Math. Jussieu, Volume 1 (2002) no. 1, pp. 1-76 | MR | Zbl

[8] Viktor A. Kolyvagin Euler systems, The Grothendieck Festschrift, Vol. II (Progress in Mathematics), Volume 87, Birkhäuser, 1990, pp. 435-483 | MR | Zbl

[9] Bernadette Perrin-Riou Systèmes d’Euler p-adiques et théorie d’Iwasawa, Ann. Inst. Fourier, Volume 48 (1998) no. 5, pp. 1231-1307 | DOI | Numdam | Zbl

[10] Karl Rubin Stark units and Kolyvagin’s Euler systems, J. Reine Angew. Math., Volume 425 (1992), pp. 141-154 | MR | Zbl

[11] Karl Rubin Euler systems, Annals of Mathematics Studies, 147, Institute for Advanced Study, 2000 | DOI

[12] Jacques Tilouine; Eric Urban Integral period relations and base change (to appear in Algebra Number Theory)

[13] Eric Urban Euler systems and Eisenstein congruences (2020) (preprint)

[14] Andrew Wiles On ordinary -adic representations associated to modular forms, Invent. Math., Volume 94 (1988) no. 3, pp. 529-573 | DOI | MR

[15] Andrew Wiles Modular Elliptic Curves and Fermat’s Last Theorem, Ann. Math., Volume 141 (1995) no. 3, pp. 443-551 | DOI | MR | Zbl

Cited by Sources: