Chromatic Selmer groups are modified Selmer groups with local information for supersingular primes . We sketch their role in establishing the -primary part of the Birch–Swinnerton-Dyer formula in Sections 2–5, and then study the growth of the Mordell–Weil rank along the -extension of a quadratic imaginary number field in which splits in Section 6.
Les groupes de Selmer chromatiques sont des modifications des groupes de Selmer, qui contiennent des informations locales pour les nombres premiers supersinguliers. Dans les sections 2–5, on esquisse leur rôle dans la démonstration de la partie -primaire de la formule de Birch et Swinnerton-Dyer, et ensuite, dans la section 6, on étudie la croissance du rang de Mordell–Weil le long de la -extension d’un corps quadratique imaginaire dans lequel est décomposé.
Revised:
Accepted:
Published online:
Keywords: Elliptic curves, Selmer group, Mordell–Weil rank
Florian Ito Sprung 1
@article{JTNB_2021__33_3.2_1103_0, author = {Florian Ito Sprung}, title = {Chromatic {Selmer} groups and arithmetic invariants of elliptic curves}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {1103--1114}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {33}, number = {3.2}, year = {2021}, doi = {10.5802/jtnb.1190}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1190/} }
TY - JOUR AU - Florian Ito Sprung TI - Chromatic Selmer groups and arithmetic invariants of elliptic curves JO - Journal de théorie des nombres de Bordeaux PY - 2021 SP - 1103 EP - 1114 VL - 33 IS - 3.2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1190/ DO - 10.5802/jtnb.1190 LA - en ID - JTNB_2021__33_3.2_1103_0 ER -
%0 Journal Article %A Florian Ito Sprung %T Chromatic Selmer groups and arithmetic invariants of elliptic curves %J Journal de théorie des nombres de Bordeaux %D 2021 %P 1103-1114 %V 33 %N 3.2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1190/ %R 10.5802/jtnb.1190 %G en %F JTNB_2021__33_3.2_1103_0
Florian Ito Sprung. Chromatic Selmer groups and arithmetic invariants of elliptic curves. Journal de théorie des nombres de Bordeaux, Volume 33 (2021) no. 3.2, pp. 1103-1114. doi : 10.5802/jtnb.1190. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1190/
[1] Anticyclotomic Iwasawa theory of CM elliptic curves. II, Math. Res. Lett., Volume 12 (2005) no. 5-6, pp. 611-621 | DOI | MR | Zbl
[2] Selmer groups and Heegner points in anticyclotomic -extensions, Compos. Math., Volume 99 (1995) no. 2, pp. 153-182 | MR | Zbl
[3] On the 2-part of the Birch and Swinnerton-Dyer conjecture for quadratic twists of elliptic curves, J. Lond. Math. Soc., Volume 101 (2020) no. 2, pp. 714-734 | arXiv | DOI | MR | Zbl
[4] Links between cyclotomic and Iwasawa theory, Doc. Math. (2003) no. Extra Vol., pp. 187-215 (Kazuya Kato’s fiftieth birthday) | MR | Zbl
[5] Arithmetic theory of elliptic curves, Lecture Notes in Mathematics, 1716, Springer, 1999, viii+234 pages Lectures given at the 3rd Session of the Centro Internazionale Matematico Estivo (C.I.M.E.) held in Cetraro, Italy, July 12–19, 1997 | DOI | MR
[6] Mazur’s conjecture on higher Heegner points, Invent. Math., Volume 148 (2002) no. 3, pp. 495-523 | DOI | MR | Zbl
[7] Class numbers in -extensions, Math. Ann., Volume 255 (1981) no. 2, pp. 235-258 | DOI | MR | Zbl
[8] Iwasawa theory and -adic deformations of motives, Motives (Seattle, WA, 1991) (Proceedings of Symposia in Pure Mathematics), Volume 55, American Mathematical Society, 1994, pp. 193-223 | MR | Zbl
[9] Galois theory for the Selmer group of an abelian variety, Compos. Math., Volume 136 (2003) no. 3, pp. 255-297 | DOI | MR | Zbl
[10] Completely faithful Selmer groups over Kummer extensions, Doc. Math. (2003) no. Extra Vol., pp. 443-478 (Kazuya Kato’s fiftieth birthday) | MR | Zbl
[11] Conjecture and -invariant for Selmer groups of supersingular elliptic curves, J. Théor. Nombres Bordeaux, Volume 33 (2021) no. 3.1, pp. 853-886
[12] Eisenstein congruence on unitary groups and Iwasawa main conjectures for CM fields, J. Am. Math. Soc., Volume 27 (2014) no. 3, pp. 753-862 | DOI | MR | Zbl
[13] On the growth of Mordell-Weil ranks in -adic Lie extensions (2019) (https://arxiv.org/abs/1902.01068)
[14] -adic Hodge theory and values of zeta functions of modular forms, Cohomologies -adiques et applications arithmétiques. III (Astérisque), Volume 295, Société Mathématique de France, 2004, pp. 117-290 | Numdam | MR | Zbl
[15] Signed-Selmer groups over the -extension of an imaginary quadratic field, Can. J. Math., Volume 66 (2014) no. 4, pp. 826-843 | DOI | MR | Zbl
[16] Rankin-Eisenstein classes and explicit reciprocity laws, Camb. J. Math., Volume 5 (2017) no. 1, pp. 1-122 | DOI | MR | Zbl
[17] Iwasawa theory for elliptic curves at supersingular primes, Invent. Math., Volume 152 (2003) no. 1, pp. 1-36 | DOI | MR | Zbl
[18] Factorisation of two-variable -adic -functions, Can. Math. Bull., Volume 57 (2014) no. 4, pp. 845-852 | DOI | MR | Zbl
[19] On the Mordell–Weil ranks of supersingular abelian varieties in cyclotomic extensions, Proc. Am. Math. Soc., Ser. B, Volume 7 (2020), pp. 1-16 | DOI | MR | Zbl
[20] Ranks of elliptic curves over -extensions, Isr. J. Math., Volume 236 (2020) no. 1, pp. 183-206 | DOI | MR | Zbl
[21] Iwasawa theory and -adic -functions over -extensions, Int. J. Number Theory, Volume 10 (2014) no. 8, pp. 2045-2095 | DOI | MR | Zbl
[22] Plus/minus Heegner points and Iwasawa theory of elliptic curves at supersingular primes, Boll. Unione Mat. Ital., Volume 12 (2019) no. 3, pp. 315-347 | DOI | MR | Zbl
[23] Fonctions -adiques d’une courbe elliptique et points rationnels, Ann. Inst. Fourier, Volume 43 (1993) no. 4, pp. 945-995 | DOI | Numdam | MR | Zbl
[24] Fonctions -adiques des représentations -adiques, Astérisque, 229, Société Mathématique de France, 1995, 198 pages | Numdam | MR
[25] On the -adic -function of a modular form at a supersingular prime, Duke Math. J., Volume 118 (2003) no. 3, pp. 523-558 | DOI | MR | Zbl
[26] On -functions of elliptic curves and cyclotomic towers, Invent. Math., Volume 75 (1984) no. 3, pp. 409-423 | DOI | MR | Zbl
[27] Multiplicative reduction and the cyclotomic main conjecture for , Pac. J. Math., Volume 283 (2016) no. 1, pp. 171-200 | DOI | MR | Zbl
[28] The Iwasawa main conjectures for , Invent. Math., Volume 195 (2014) no. 1, pp. 1-277 | DOI | MR | Zbl
[29] Iwasawa theory for elliptic curves at supersingular primes: a pair of main conjectures, J. Number Theory, Volume 132 (2012) no. 7, pp. 1483-1506 | DOI | MR | Zbl
[30] The Šafarevič–Tate group in cyclotomic -extensions at supersingular primes, J. Reine Angew. Math., Volume 681 (2013), pp. 199-218 | MR | Zbl
[31] The Iwasawa Main Conjecture for Elliptic Curves at odd supersingular primes (2016) (https://arxiv.org/abs/1610.10017, submitted)
[32] On pairs of -adic -functions for weight-two modular forms, Algebra Number Theory, Volume 11 (2017) no. 4, pp. 885-928 | DOI | MR | Zbl
[33] Some remarks on the two-variable main conjecture of Iwasawa theory for elliptic curves without complex multiplication, J. Algebra, Volume 350 (2012), pp. 273-299 | DOI | MR | Zbl
[34] Special values of anticyclotomic -functions, Duke Math. J., Volume 116 (2003) no. 2, pp. 219-261 | DOI | MR | Zbl
[35] Iwasawa Main Conjecture and BSD Conjecture (2014) (https://arxiv.org/abs/1411.6352, submitted)
Cited by Sources: