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On Euler systems for adjoint Hilbert modular
Galois representations

par ERic URBAN

RESUME. Nous prouvons I'existence de systémes d’Euler pour les représen-
tations galoisiennes modulaires adjointes p-ordinaires en utilisant les défor-
mations de représentations galoisiennes provenant de formes modulaires p-
ordinaires de Hilbert et nous leurs associons des fonctions L p-adiques via
une formule conjecturale pour 'idéal de Fitting d’'un module de congruences
équivariant pour le changement de base abélien.

ABSTRACT. We prove the existence of Euler systems for p-ordinary adjoint
modular Galois representations using deformations of Galois representations
coming from p-ordinary Hilbert modular forms, and relate them to p-adic L-
functions under a conjectural formula for the Fitting ideals of some equivariant
congruence modules for abelian base change.

1. Introduction

After the introduction of the notion of Euler systems by Kolyvagin [8] as
a powerful tool to understand the structure of Selmer groups, a systematic
study of them by Perrin-Riou [9] and Rubin [11] has led naturally to the
notion of Euler systems of rank d for some positive integer d. In [10], Rubin
shows that Stark type conjectures give some evidence of the existence of
such systems but so far there was no construction when d > 1 without using
the validity of the corresponding Main Iwasawa—Greenberg conjecture.

This work is one of a series of papers (see for example [13]) in which
the author is investigating the construction of Euler systems via the study
of congruences between automorphic forms of various levels and weights.
The main purpose of this note is to give an illustration of this principle for
adjoint modular Galois representations and must be seen as an example of a
very general construction. In each situation, some technical difficulties arise
which can or cannot be overcome depending of what is known about the
structure of certain modules over the Hecke algebras involved. Nevertheless,
it is the author’s conviction that these principles shed light on the Iwasawa
theory of the Galois representation at play and will eventually lead to the
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proof of new Iwasawa Main Conjectures by a successful study of these
congruences. In the situation of this paper, we will also show that Euler
systems of rank d > 1 can be constructed by this technique. Note that
despite there being other works giving evidence of the existence of Euler
systems of higher ranks based on the knowledge of the Main Conjectures,
there is not yet any geometric constructions of such.

To describe the construction done in this paper, let us introduce some
notations. Let p be an odd prime and F' be a totally real number field of
degree d over the rationals Q. Let f be a nearly p-ordinary Hilbert cuspidal
eigenform. Let us denote by py the Galois representation attached to f:

pPr: GF — GLo(Tf)

where T’ is a O-free module of rank 2 for some finite extension O of the
ring of p-adic integers Z, and G is the absolute Galois group of F'. We
will assume throughout the paper that the residual representation py is
absolutely irreducible. This representation is nearly ordinary at each place
v dividing p, which means for such v there exists a O-direct factor Fil T’ 't
of rank 1 which is stable under the action of the decomposition subgroup
D, C GF at v. We will also assume that py is v-distinguished! at each place
v dividing p. We write F), for the completion of F' at v and d,, := [F}, : Qp).

We denote by ad(py) C Endo(Ty) the adjoint representation on the
endomorphisms of Ty having trace 0. The filtrations Fil,; Ty on Ty induce
for each v a three steps filtration on ad(py) :

FfcFcF, =ad(py)

with rank 1 graded pieces. We denote by Gr¥ := F0/F:} and fix an isomor-
phism of D,-module Grg = 0. We consider the restriction map at p:

res,: H'(F,ad(py)) — @ H'(F,,ad(py))
vlp
Finally recall that for any Galois representation V' of G and S a finite set

of finite places, we denote by L*(V, s) the corresponding L-function defined
as the Euler product:

L3(V,s) =[] Polagy*; V)"
véS

where P,(X,V) := det(1 — X Frob,; V!*) with Frob, € D, a geometric
Frobenius, I, C D, the inertia subgroup at v and ¢, the cardinality of the
residue field at v. We denote by I'(V, s) the corresponding I'-factor.

1The trace of the residual representation restricted to D, is the sum of two characters which
are distinct modulo the uniformizer w of O.
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Let us denote by ®% py the tensor induction from Gr to Gg of the
residual representation pr. The beginning of this work starts by observing
that Hida theory for Hilbert modular forms can provide a proof of the
following theorem.

Theorem 1.1. Let us assume that ®% py is absolutely irreducible. Then,

there exists a canonical element zy € Nb H'(F,ad(py)), defined up to an
element in O™ such that

(1) Abresy(zf) belongs to Qulp AL HY(F,, FO).
(ii) The image of Aeres,(zy) by the map

dy dy
QRQNH (F, F)) — @ N\ H (1, Gr%)P/T = 0
vp O vlp O

is equal to

L(ad(py), 1)L (ad(py), 1)

§ =
Y OZF\X
QFQy”

where Sy is the set of finite places containing those where py is ramified
and (Q?)Ecgp are the canonical complex periods attached to the Hilbert
modular form f in [1].

The proof of this result follows from examining the first fundamental
exact sequence of Kihler differentials of the universal ordinary Hecke al-
gebra and the interpretation of the latter in terms of Galois cohomology
classes and congruence modules. In particular, it uses the fact due to the
works of Hida and Wiles [4, 15] in the case F' = Q and Dimitrov [1] in
general that {; measures the size of the congruence module py/ pfc where
pf = Ker(Af) with Ay the homomorphism of the cuspidal Hecke algebra of
the same weight and level as f that gives the Hecke eigenvalues associated
to f.

Before stating the main result of this work which is a generalization
of Theorem 1.1, let us introduce some more notations. For any number
field or p-adic field K, we denote by K¢ the cyclotomic Z,-extension
of K. For any Galois module M over G = Gal(K/K), let H'(K, M)
(resp. H},, (K, M)) the Galois cohomology of M (resp. the Iwasawa Galois
cohomology of K which is defined as the projective limit under the norm
maps of HY(K’, M) for finite extensions K'/K with K’ C K%¢). We also
write A := O[Gal(F¥°/F)].

Let S be a finite set of places containing those dividing the level of f.
Recall that the un-primitive Selmer group Sel®(F ¢ ad(py)) attached to
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ad(py) is defined as the kernel of the restriction map:
H'(Gal(Fs/F®°),ad(ps) ©z, Qp/Zyp)
— @Hl(FsyC7ad(Pf)/fj X7z, Qp/Zy)

vlp

where Fg is the maximal extension of F' unramified away from S and p. It
is known thanks to the work of Wiles, Taylor—Wiles, Fujiwara and others
on the modularity of Galois representations (often known as “R=T" Theo-
rems), that this Selmer group is of co-torsion over the Iwasawa algebra A.
We denote by X¥(F®¢ ad(py)) its Pontrjagin dual. Thanks to the work of
R. Greenberg [2, Prop. 4.1.1], it is known that this module does not contain
any non trivial finite submodule and therefore its Fitting ideal is equal to
its characteristic ideal and is therefore principal. We fix £?’alg € A one of
its generators.

By extending the arguments of Theorem 1.1 for the base change of f to
the totally real abelian extensions F of F', we obtain the following Theorem?

Theorem 1.2. There exists a (non trivial) Twasawa—FEuler system of rank
d for ad(pf). In other words, for totally real fields E running in an S-
admissible set of abelian extensions of F which are unramified above S (see
Definition 3.11), there exists an element Zs g € ﬂf{[Gal(E/F)] H} (E,ad(py))
such that for any extensions E and E' such that E' D E D F, we have
Coresg/(ZﬁE/) = H P,U(qv_l Frobv, ad(pf)).nyE
veS(E'/E)

where S(E'/E) is the set of finite places of F' that ramify in E’ but not in
E. Moreover,

(1) N¢ res,(Zs.r) belongs to Qulp ﬂi{” H} (F,, F).

(ii) The image of N® res,(Zs.p) by the map

dy dy
R Hbo(For F2) — Q[ Hhw (L, Gr0)Po/ T = A
vp A vlp A

is equal to ﬁjsc’alg.

The Iwasawa—Zeta elements Zy i are defined as the projective limit over
n of elements z¢ g, € /\dO[AEn} HY(E,,ad(ps)); here E, denotes the field of
degree p" over E inside the Zj-cyclotomic extension E“¢ of E. In order
to construct the elements z; g € /\dO[AE] H'(E,ad(ps)) when E runs in a
certain set of totally real abelian extensions of F' with a version of (ii)
similar to Theorem 1.1, we need to understand the structure of p¢,/ p?cE

2See Section 3.4 for the definition of ﬂ; for any commutative ring A and positive integer r.



On FEuler systems for adjoint Hilbert modular Galois representations 1119

as a module over O[Ag]. Here A := Gal(E/F), fg is the base change
to E of the Hilbert modular form f and gy, is determined similarly as
©. The link between the Iwasawa theory of the Selmer groups attached
to ad(py), the congruence modules oy, / p}E and deformation theory of the
Galois representation p; has been systematically studied by Hida in [6]. In
particular, it can be seen from deformation theory that we have a canonical
surjection
X (B ad(py)) = 915/07,

and in the proof of Theorem 1.2, we use that the Fitting ideal of the dual
Selmer group X°(E%¢ ad(ps)) which therefore annihilates gy, / p?cE be-
haves well when E varies (see Proposition 3.18).

B. Perrin-Riou [9, App. B] and K. Rubin [11] have developed some ar-
guments to extract Euler systems of rank ones from one of higher rank.
However, our method allows us to obtain directly rank one Euler systems
with prescribed local conditions at places dividing p. More precisely, we
have the following result.

Theorem 1.3. For each place v|p, there exists a system of classes cf, €
H{ (E,ad(py)) with E running in an S-admissible set of abelian extensions
of F' such that

Corest ()= [[  Pu(ay" Froby,ad(py)).cy
weS(E'/E)
Moreover

(i) For all place w of E dividing p, res,(c%) belongs to H} (Ey, Fo)
and furthermore belongs to Hi (Ey, F.b) if wtv.
(ii) The image of res,(c}) by the map

Hllw(Fvva) — H11W(Iv7 GI‘?])D“/I“ ~ A
s equal to E?’alg‘

To obtain an Euler system with Iwasawa—Zeta elements that we can
relate to p-adic L-functions, we would like to know that

L3 g € Fittoia ) (0rs/0F,)

where L'JScE € K[Ag] is the unique element satisfying for every x €
Hom(Apg,C*)

G(x)T (ad(ps) ® x, 1)L (ad(py) ® x, 1)
Q7>

(1.1) X(Lip) =

where Sg is the union of S and the set of finite places that ramify in
E/F and G(x) is the Gauss sum attached to x. We make the following
conjecture.



1120 Eric URBAN

Conjecture 1.4. For each totally real abelian extension E/F' that ramifies
away from S or at p, we have E?E € Fitto[AE](pr/p?cE).

Then we have:

Theorem 1.5. If we assume Conjecture 1.4, the conclusion of Theorem 1.2
holds with Es’alg replaced by the un-primitive Coates—Schmidt p-adic L-

function CS an.

A weaker form of the conjecture is the following.

Conjecture 1.6. For each totally real abelian extension E/F' that ramifies
away from S or at p, Ei p annihilates p¢, / Q%E.

Then we have:

Theorem 1.7. If we assume Conjecture 1.6, the conclusion of Theorem 1.3
holds with C?’alg replaced by the un-primitive Coates—Schmidt p-adic L-

function Es’an.

Note that either of these conjectures implies that the elements £ 7 g are
integral, in otherwords that they belong to O[Ag]|. Note that this fact could
be proven using the techniques of [5]. Assuming this integrality statement
for all extensions FE,/E, we define the equivariant Coates—Schmidt p-adic
L-function

Ly =1im LF € A =1im O[Gal(E,/E)).

where we write F, for the extension of E of degree p™ inside E%°. For
E = F, we just write E?’an € A. Up to a unit in A, E?’an is the un-primitive
Coates—Schmidt p-adic L-function.

Using the Euler system machinery, we can then deduce, assuming con-
jecture 1.6, that the following divisibility holds in A:

S,alg S,an
(1.2) Ly Ly

On the other hand, by refining the techniquess of Iwasawa theory and Euler
systems to the equivariant setting, it is very likely that one can show that
the existence of an Euler system with the bottom class satisfying the correct
property is implied by the divisibility above for all the twist ad(pf) ® x.
It would then follow that the existence of the Euler system satisfying the
correct bottom class condition is equivalent to Conjecture 1.4. We leave the
verification of these expectations to the interested reader.

This note is organized as follows. Section 2 is devoted to recalling facts
about Hida families for Hilbert cuspidal eigenforms, their Galois represen-
tations and congruence modules. We also state the conjecture about their
annihilators. Section 3 contains the construction and the properties of the
cocycles and of the compatible systems of cohomology classes and zeta
elements.
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Notations. Throughout this paper p is a fixed odd rational prime. Let Q
and @, be respectively the algebraic closures of Q and @, and let C be the
field of complex numbers. We fix embeddings to : Q — Cand ¢, : Q — Q,,.
Throughout this note, we implicitly view Q as a subfield of C and Q,, via
the embeddings ¢, and ¢, and we fix an identification @Q, = C compatible
with these embeddings. We denote by €.y the p-adic cyclotomic character.

2. Congruences modules for Hilbert modular forms

2.1. Universal ordinary Hecke algebras. Let F' be a totally real field
and Op its ring of integers. We denote by X the set of embeddings of F
into Q. Let T' = Tr be the torus defined over Z by Tp(A) = (O ®z A)*.
Let p be an odd prime. We write T'(Zy)tor for the torsion subgroup of T'(Z,)
and I'p for the subgroup of T'(Z,) such that T(Z,) = T(Zp)tor X I'r. We
have I'p = ZZ with d = [F : Q] is the degree of F over Q. We fix O a finite
extension of Z,, we denote Ap := O[['r].

Let A = (3, ko.0,3 5 ls.0,) € Z[XF])? be an arithmetic weight (which
means that k, > 2 for all 0 € ¥p and w = ks + 2l, is independent of
o). We fix n a non zero integral ideal of Op prime to p and let KP(n) C
GLy(ZP ® Op) be the subgroup of matrices which are congruent to the
identity matrix modulo n and where we have written 7P for the projective
limit of Z/MZ for the integers M prime to p. We also fix w be an idele
class character of conductor dividing np> and infinity type | - |*“.

For each positive integer n, we denote by Ky(p™) the subgroup of
GL2(Of ® Z,) of matrices which are upper triangular modulo p™ and by
Ki(p™) its subgroup of those such that the diagonal entries are congru-
ent modulo p™. We will identify Ko(p™)/K1(p") with (Op/p"Or)* via the
map (%) — a~'d. Let h%i(n, p",w) be the ordinary Hecke algebra of lever
KP(n)K(p") and weight A\. We then consider the universal nearly ordinary
Hecke algebra of weight A and tame level KP and action of the center given
by w.

h$*! = h§'{(n) := lim h%S (n, p")

H
n

This is the Hecke algebra denote h(UY,0) by Hida in [6, p. 403] with

o0
T

W = Clp(p*°). From the action of Ky(p™)/K1(p"™) on the space of ordinary
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forms of weight A and level KP(n)K;(p"), we inherit an action of I'r on
h%rd which therefore has the structure of a Ap-algebra. For any finite order
character ¢ of I'r, we denote by P, the kernel of the map from Ag into @p
induced by .

Theorem 2.1 (Hida). h°™d(n) is free of finite rank over Ap. Moreover, for
any arithmetic character 1y, there is a canonical isomorphism

hS(n) © Ap/Py = hES (v, ", 4)
ord

where hFM\(n,p’",w) denotes the Hecke algebra over O(y) generated by the
Hecke operators acting on the space of ordinary Hilbert modular forms of
weight X\, level KP(n)K1(p") and with nebentypus restricted to the image of
Lr into (Op/p"OF)* given by 1p where r is the smallest integer such that
¥ factorizes through that image.

Proof. This follows from Hida’s works. See for example Corollary 5.3 of [6]
for W* = W¢ or [7]. O

Let now f be a p-nearly ordinary Hilbert modular form of tame level
KP(n), unramified central character at p and weight A with Hecke eigen-
values contained in O via the embedding of Q into Q. It gives rise to a

homomorphism: Ay : h}’{‘i(n,p",z/;) — O for some character ¢ of level p”.

We will denote A ¢ the composite of A\; with the canonical surjective map
h‘}{‘;\(n) — h§rd(n, p",1)). We therefore have a map:

Ar:h¥4(n) — O

Following H. Hida, we can define two congruence modules. Let B be the
unique quotient of h‘;\rd(n, p", 1) such that

hE{(n,p",9) — O x B
where the first projection map is Ay and the second Ap is the canonical
map induced by the fact B is a quotient of A" (n, p", 7). Let ng = ker(Ap)

which naturally imbeds into O via Ay and let gy = Ker(Ay) which imbeds
in B via Ap. The we can define the congruence modules

Co(f):=0/n; and Ci(f):= pf/p? = th))\rd(rl’pr’d})/O @x; O.

Via the canonical isomorphism O/n; = B/p¢, we see that 7y annihilates
©f/ pfc and o/ p? is therefore finite since it is finitely generated over O and
ny # 0. ~

Let o := Ker(Af). The following exact sequence will play a fundamental
role in this paper.

Lemma 2.2. With the notation as before, we have a canonical exact se-
quence
0— QAF/O QAR 0O — @f/ﬁ?c — pf/pfz —0
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Proof. We write the first fundamental exact sequence of Kahler differentials
attached to the maps O — Ap — h%r"}\ (n) which we tensor by O through Ay:

/0 Dap b0 @30 1 Qg ()10 95,0 — Yy /0, 3,0 — 0
Since h%rf}\(n) @ A/Py » = h(j{‘i(n,pr, 1Y), we easily see that we have
Lpora () /ap D3, O F Dnord (m)/a . Onord(n) hE{(n, p", ¥) @, O
= Qh%‘i(n,pnw)/o @5, 0 =91/}

and is therefore finite. To deduce that the map (1) is injective, since
Qpord(n) /Ay ®;\f O = Qpp0 @pp O = 04 is torsion free. it is sufficient to
prove the injectivity after inverting p. Since after inverting p, the map (1)
is surjective, it is therefore sufficient to prove that Qh%rc; (/0 O3, O[1/p] is

of rank at least d. This follows from the fact that hj’{&l(n)[l /p] is of Krull
dimension d, by [6, p. 40 property ff], or because it is free of finite rank over
Ar[1/p] thanks to Theorem 2.1. Note that the fact that pf/p} is finite says

ord

exactly that the map Spec hFJ\(n) — Spec Af is étale at Xf at the level of
generic fibers. O

2.2. Base change. Let now F be a totally real abelian extension of F.
The norm map from OE to O}XW induces a map from I'g to I'r and therefore
from Ag to Ap inducing the base change transfer map for characters of
p-power level. It induces an isomorphsim

Ap/IEAE = Ar
where I is the augmentation ideal of the group ring Ar := O[Gal(E/F)]
acting on A via the Galois action of Gal(E/F) on Oj,. On the other hand,
the imbedding Oy < Oj gives Ag the structure of a Ap-algebra.
Let us identify ¥ g with the set of embeddings of E into @, via our fix
embedding ¢,: Q < @p. Then we have a non-canonical isomorphism

AE = O[[TU,O' S EE]]

such that the map Ag — O induced by the evaluation at the weight of
fE is induced by T, — 0 for all ¢ € Xg. We may choose and fix such
isomorphisms so that, for any intermediate extension £’ C E, the canonical
surjective map Ag — A is induced by the canonical surjection ¥ g — Y.
This clearly induces the isomorphism

Q0 ®0 = P 0.dT,
oelp

where Y fo.dT, is mapped to Y, f-(0,...,0).dT,. Moreover the free ac-
tion of Gal(E/F') on ¥ shows that Q,, /0 ® O is free of rank d over Ag.
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We now define the base change homomorphism for the ordinary universal
Hecke algebras. Let ng := nOpg. By the existence of solvable base change,
there is a canonical algebra homomorphism:

mh(n,p"): hEY(ng, p™")[1/p] — hF(n, p™)[1/p]

Let ’H% be the restricted tensor product over O of the spherical Hecke
algebras over O for GLo(E,) for all finite place w above a place of F
not in S. The local base change for unramified representations implies we
have a canonical algebra homomorphism IT£(S): H2, — H3 such that the
following diagram commutes

mE(s

| i

hgd(ng, p")[1/p] —— b (n, p™)[1/p]

Since the Hecke algebras h%rd(nE,p") are torsion free, it follows from the
above diagram that the base change homomorphism preserve the integrality
of Hecke operators and defines a homomorphism h%4(ng, p*) — h%d(n, p?).
After passing to the projective limit over n, we deduce the base change map
for the ordinary universal Hecke algebra

Wg : h%d(nE) — h%rd(n)

becomes a homomorphism of Ag-algebras for the Ag-algebra structure of
h‘}’%“d(n) induced by the base change transfer map for the character Ag — Ap
described above.

Let us denote by fg the ordinary Hilbert modular form for £ defined
by Py e = Py 7 o mg r. Recall that there is a natural action of the Galois
group Gal(E/F) over h#4(ng) defined by U, — Upe for p|p and Ty — Tye
for any prime ideal q of E and o € Gal(E/F). It induces an action on
the characters of this algebra leaving A, invariant. It induces therefore an
action of Gal(E/F) over C1(fg) = pr/picE.

Let us record the following lemma

Lemma 2.3. With the notation as before, pr/pf[E is O-torsion and we
have a canonical exact sequence of Ag-modules

0— QAE/O Oy O — @fE/@?”E — pr/@?”E —0

Proof. The proof is similar to Lemma 2.2. The fact that the maps are
equivariant for the action of Ag is clear. O
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2.3. Galois representations. Let Gy = Gal(Q/F) be the absolute Ga-
lois group of F. For each finite place v, we denote respectively G,, I, and
Frob, € G, a decomposition subgroup at v, its inertia subgroup and a
Frobenius lift at v. To each ordinary Hilbert modular form f for F of
weight A and tame level np” and nebentypus at p given by ¢ as in the
section above, one can associate a nearly ordinary p-adic continuous Galois
representation thanks to the work of many authors (for example see [14]
and [6, p. 406-407]).
Pf GF — GLQ(O)
such that

(i) py is unramified at finite places of F' not dividing np.
(ii) For each place v not dividing np and geometric Frobenius Frob, €
G at v, Trace(ps(Froby,)) = A¢(T})
(iii) For each place v|p, there exists ay, € GL2(O) and characters 1),
and 1] of Gy, such that

pr(g) = afy (%(gg) w:Eg))

such that 1,|7, is the character of I, corresponding to ¢|OFU via
local Class Field Theory that identifies Frob, with an uniformizer
of OFU .

(iv) det py = weeye.

a;ﬂlj VgeaG,

Let us assume the following irreducibility assumption:

(Irred) The reduction pf of py modulo the maximal ideal of O is absolutely
irreducible.
Let slp(O) be the set of 2 x 2 matrices A with entries in O such that
tr(A) = 0. We consider the adjoint action ad(ps) of G on slx(O) via py.
It is defined by

ad(py)(9)-A = pr(9)Aps(9)™"
Note that under the condition (Irred), we have

(2.1) HO(E, ad(57)) = 0

for any totally real field extension E/F. Throughout this paper, we will
further assume the conditions:

(Dist) For each v|p, the characters v, and v are distinct modulo p.
(Indec) For each v|p, pf|q, is indecomposable.

2.4. Twisted adjoint L-values. We are interested in the nature of the
Fitting ideal of py, / go?cE over Ag. We formulate a conjecture about it below.
We first introduce some notations. For any finite order character y of Gg
and finite set of primes S, we consider the S-primitive twisted L-function
L5(ad(ps) ® X, s). It is known to be holomorphic on the whole complexe
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plane except maybe if p; is dihedral, a case we exclude by our hypothesis.

For any subset > C ¥, M. Dimitrov has introduced in [1] some canonical

periods Q? € C*/(0NQ)* so that

(ad(py) ® x, 1)L (ad(py) @ x, 1)
Qa7

L(ad(py) ® x,1) = G(X)2F € K(x)

where K (x) C @p is the extension of K generated by the values of x and
G(x) is the Gauss sum attached to x.

Let Sg be the set of places of F' dividing np and those ramifying in
the extension E/F. For each character x: Gal(E/F) — Q" @;, let
ey € K(x) ®0 Ag be the idempotent projecting any K[Gal(£/F')]-modules
on its y-isotypical component. We then define

LE(ad(py)) =D L (ad(ps) ® X, 1).ex € Q, @0 Ap
X

where the sum runs over all the characters of Gal(E/F'). The part (iv) of
the following conjecture is an equivariant formulation of the congruence
number formula established by Hida in the eighties.

Conjecture 2.4. For any totally real abelian extension F/F that ramifies
away from S or at p, we have:

(i) L' (ad(py)) € Ag,

(i) £E*(ad(py)) annihilates gofE/p?E,
(iii) £ (ad(py)) belongs to the Fitting ideal of pr/p?cE over Ap.
(iv) LE (ad(py)) generates the Fitting ideal of pr/pﬁeE over Ap

The part (i) of the above conjecture should not be difficult to prove using
the integral representation of these twisted L-values using Eisenstein series
and Theta series of half integral weight as was done by Hida in [5] for
F = Q. We can think of (ii) as an automorphic Stickelberger Theorem and
we will see that if we assume (ii) for many fields F, we can construct Euler
system of rank one for ad(ps). However part (iii) which implies part (ii)
is stronger and allows one to construct Euler systems for ad(ps) of rank
d. When E/F is quadratic, J. Tilouine and the author have proved this
conjecture in [12] which was formulated in the quadratic case by H. Hida
in a slightly different way.

3. Congruences and Euler systems

3.1. Big Hecke rings and Galois representations. Let E/F like in
Section 2.2. Let T be the local component of h%4(n) associated to the
maximal ideal containing Ker(x fz)- It is flat over Ag and it is equipped
with a natural action of Gal(E/F') such that the natural map Ap — Tg is
Gal(E/F)-equivariant.
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Then, there exists a Galois representation
PTy - GE — GLQ(TE)

such that

(1) pr, is unramified at finite places of F' not dividing np.

(2) For each place v not dividing np and arithmetic Frobenius Frob, €
Gg at v, Trace(pt, (Frob,)) = T,

(3) For each place v|p of F' and each place w|v of E, there exists a,, €
GL2(Tg) and characters ¥,, and ¥/, of G,, such that

and W, |1, = ¥ul1,Kw, Where Ky, is the character of I, A 0F —
(Op ® Zp)* — T'y C A}, where Art is the restriction to I, of the
isomorphsim of local Class Field Theory G2P = EX that identifies
Frob,, with an uniformizer of Op,, .
(4) det PTp = LUEgle.
3.2. Construction of cocycles. Let o, = Ker(XfE : T — 0). We
denote qp := pr/p?cE and qp = ﬁfE/@?cE, and we see them as Galois
modules with action of G given via the natural action of Gal(E/F') on

Tg. Note that the exact sequence of Lemma 2.3 induces an exact sequence
of O[Gal(E/F)]-modules:

(3.1) 0—Q%,020 —qg — qg — 0

where ), /0 ® O is free of rank d over Ap = O[Gal(E/F)].

Let us denote by sla(O) the Lie algebra over O of 2 x 2 matrices of trace
0. We will most of the time use the notation ad(ps) instead of sla(O) to
emphasis that it is a Galois module for the adjoint action of py given by

9.X = pr(9)Xpp(g)~* VgeGr, YXEeshO)

For g € G, we define an element x5 g(g) := x(g) € sl2(0) ®o @fE/@?‘E by
the equality

2(g) == pr(9)ps(9)~' — 12 (mod §7,)

Lemma 3.1. The map g — z g(g) defines a cocycle in Z1(Gg,ad(p) ®
qg). Moreover, for any 7 € Gal(E/F'), we have

7(g)=7"2(9), VgeGg

where on the left hand side the action of 7 is the natural one on the set of
cocycles and the right hand side action is the one on qg.



1128 Eric URBAN

Proof. From the definition of x(g) we have

pr(g) = (12 +2(9))ps(9)  (mod 5%,)
Since pt and py have the same determinant, we have det(1 + z(g)) = 1

(mod @?E) and therefore x(g) has trace zero modulo @%E Now, an easy
computation provides that
z(99") = 2(9) + py(9)z(9)ps(9) ™" +2(9)ps(9)2(9 )ps(9) ™
= 2(g) + ps(9)a(g)ps(9)™"  (mod §F,)

which implies the first claim.

Let now 7 € Gal(E/F). By definition of the action of 7 on T, we have
the matrix identity
(3.2) 7 pr(9)) = Arpr(r~gm) AL
for some matrix A; € GLo(T). Since 7.y, = Ajs,, from the equality
pr(Tgr™1) = pr(T)ps(g)ps(7) ™1 and the fact py is residually irreducible,
we can easily see that we may choose A, so that

A =pp(r) (mod @y,)

Therefore, since 7 1.p7(g) = ps(g) for all g € G, we have the following
identities modulo @%E

(Lo + 7 z(9)pr(9)m " = (Lo + Apa(r7 gr) AT Arpy (11 gr) A
= (Lo + pp(T)z(trgm)pr (1) Hps(9)

Therefore we deduce:

T ha(g) = pp(r)a(r gT)ps(1) ™" (mod 57,

which proves the second claim. O

Corollary 3.2. The cocycle xy, descends canonically to a cohomology
class

:fE (S Hl(F, ad(pf) Ko aE)

Proof. 1t is clear that z, defines a cohomology class in H'(E,ad(pf) ®o
qg). This class is invariant by Gal(E/F) by the previous Lemma. The
inflation restriction exact sequence gives

0 — HY(Gal(E/F), H*(E,ad(ps)) ®0 4E)
— H'(F,ad(py) ®0 G) — H'(E,ad(ps) ®0 45
— H*(Gal(E/F), H*(E,ad(ps) ®0 Gr)

This implies that H'(F,ad(pf) ®0dE
it is easily seen that HY(E,ad(py)

)Gal(B/F)

=~ [Y(EB,ad(ps)@0qr) M E/F) since

)
®o qr) = 0 from the irreducibility of
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the residual representation p¢|q,,. Our result follows from this fact and the
previous Lemma. Il

In what follows, we will consider the map
cg : Gy = Homa, (Gp, Ap) — H'(F,ad(pf) ® Ap) = H'(E,ad(py))
sending ¢ € Hom 4, (qg, Ar) to the cohomology class of the cocycle
g = (idg,(0) ®9) 0 TE(9)-

3.3. Local non-triviality. Let L be a finite extension of Q, with absolute
Galois group G . We denote by I;, C G, the inertia subgroup of G and
by Froby, € G, a Frobenius element. Let S;, be the universal deformation
ring representing the deformation functor F; of the trivial character of
G, defined on the category of local noetherian O-algebra. Let kj, be the
corresponding universal deformation xy: Gy — Sr. We also denote by I'g,
the p-torsion free part of O] . The following lemma is well known.

Lemma 3.3. With the previous notations, the following holds.

(i) For any O-deformation x € Fi(O), we have a canonical isomor-
phism S;, = O[T][I'.] with 1 4+ T = k(Froby) such that the map
induced by reducing modulo the augmentation ideal of I'y, and T
to 0 corresponds to the character y.

(ii) xr|r, takes valuesin O[I'L]™ and is induced by the Artin reciprocity
map Artp: Gib >~ [Lx.

(iii) For any O-deformation x € F;(O), we have canonical isomorphisms:

F1(Ole)(€?)) = Homs, (Qs, j0,0) = H'(L, 0)

where O is seen as a Sp-module via the map Sy, — O induced by
X In particular, it is free of rank [L : Qp] + 1. Moreover, we have
the following commutative square

~

HOHISL(QSL/O,O) Hl(L,O)

| |

Homor, 1(Q0r, /0, O) TNL> H' (I, 0)%/

where the horizontal arrows are isomorphism and where the left
arrow is induced by the inclusion O[I'y] € S and O is an Sp-
module by the character x.

(iv) These isomorphisms are norm compatible for any extension L'/L.

Proof. This is an elementary exercise in deformation theory using the reci-
procity law of Local Class Field theory. O
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Let v be a place of F' dividing p and let F}, be the corresponding comple-
tion. Let ad(pf) = F, O FO O F,f be the G, stable filtration with graded
pieces Gr, , Gr2 and Gr;" of rank 1 over O where

a b

Fo = {A € sly(0) ‘ A=ay, (0 L

) oz]?ﬂl) for some a, b € O}.
and

Fi(ad(py)) = {A € sl(0) ’ A=ayp, (8 8) a;ﬂl), for some b € O}.

On the other hand, we have an isomorphism
(3.3) Qppro®0 = @QOUFEwﬂ/O ®0
wlp
For any ¢ € Homa,(qg, Ag), we denote by ¢y, the restriction of ¢ to
QOH[FEW]]/O ®0 CQ,0®0 < 9.

Lemma 3.4. For each ¢ € Homy, (g, Ag) and each place w of E above
v, we have

(i) cw(9) = cu(d)lap, € H'(Ew, F).
(ii) Let ¥ (¢) be the image of c,(¢) in H'(I,,, Gr%) = H'(I,,,0). Then
cu(9) = 95, (du)

where dp,, is the isomorphism of Lemma 3.3 (iii).

Proof. Since prt,|a, is nearly ordinary, for g € G,,, we have
. * * -1
pr(9) = Quw < \Ifw(g)) Oy

where thanks to (Indec), we may choose o, so that oy, = Ay, () with

ES * _

Let X, € sla(0) ®o @y, such that X, = a;laf’v — 15 (mod @?CE) For
all g € Gy, then an elementary computation gives the equality in sla(O) ®
@fE/@ffE:

03 r@)w = (g, i)
— 1z + oy fad(pr(9))(X,) = XoJay, (mod §7,)

The cocycle defined by the second term in the above equation being a
co-boundary, we may assume that X, = 0 in the computation. We see
that from this expression and the definition of the cocycle that (i) follows.
Now we look at the restriction to the inertia subgroup I, C G. Recall
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that W7, is the universal deformation of the character |, , where we
see 1 as a character of I, for v the place of F' below w associated to
¥ via the Reciprocity Law of Local Class Field Theory. In other words,
Vylr, = Yol1,kE,- Now, for ¢,, € Homo(Qo[[pEw]], 0), we have

0B, (0w)(9) = Puw(kE,(9) — 1)
where we see ¢, as a linear form on the augmentation ideal I, of O[T'g,]
via Irp, — Iry, / I%Ew = Qofry, 1/0- Our claim now follows easily from in-
terpreting the last three equations in the definition of ¢ (¢) after identifying
GrY with the trivial Gx,-module via the map

—a ok -1
afy ( 0 a) Ay, > Q. O
The following corollary is immediate.

Corollary 3.5. The map EBw|p Resy ocg induces an isomorphism of Ap-
modules:

P Homo (Qiry, 1/0:0) = P H' (Ip,,, 0) ! Tow
w|p w|p

In particular, the map cg is injective.

3.4. Zeta elements. We construct zeta elements in Rubin’s lattice at-
tached to the Galois cohomology of ad(ps). We first recall some definitions.

Let A be a finite free O-algebra. Let n be a positive integer. If L is a
A-module, we put following Rubin:

where for any A-module M, we set M* := Homy (M, A). L — ()4 L defines
clearly a covariant functor from the category of A-modules to itself. In what
follows we take A = Ap = O[Gal(E/F)]. Now we consider the map we have
defined in the end of Section 3.2:

cp : Gy = Homa, (dp, Ap) — H'(F.ad(py) ® Ap) = H'(E,ad(py))

and apply the co-variant functor (%

d d d
(3.4) ﬂcE: ﬂa*E — ﬂHl(E,ad(pf))
Ap Ap

Since Q4 ,/0 ® O is free of rank d over Ag, we can fix an isomorphism

d

(3.5) N (Q,/0 ®0)* = Ap
Ag

From the previous corollary, we get easily the following
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Corollary 3.6. We have a commutative diagram

N4, a5 N4, (0 ®0)* = A

Ves| |-

ﬂq Resy

Proof. We just apply the covariant functor ﬂiE to the isomorphism of
Corollary 3.5. O

We define the local Zeta elements 2 joc € ﬂfflE @w|pH1(Iw,Gr*O))GEw /By
the element corresponding to 1 via the isomorphism of Corollary 3.6 and
(3.5). The following lemma will be useful to construct elements in

Mo, H'(E,ad(py)).

Lemma 3.7. Let qg be the cokernel of the map ﬂfflE q}; — Ag induced
by the exact sequence (3.1) and the isomorphism (3.5). Then we have

Fitta, (de) D Fitta, (0r./07,)-

Proof. Notice that for any Ag-module M, we have a canonical isomorphism
M* = Homy, (M, Ag) = Homp(M,0O) =: M’'. Moreover if we have an
injective homomorphism f: X — Y of Ag—modules which are O-free of
same rank over O, inducing by duality an injective homomorphism f’': Y' —
X'’. Then Coker f’ and Coker f are Pontryagin dual to each other. Moreover
if both X and Y are equipped with a O-linear action of a group G and if
f is itself G-equivariant, then the corresponding duality isomorphism is
G-equivariant. This implies that Fitt 4, (Coker f') = Fitt 4, (Coker f). We
consider now the map fg: Q4,0 ® O — qg. We have f5*: O pjo®0 —
(qr)f where (qg)s is the maximal O-free quotient of gg, and therefore

Fitt 4, (Coker ") D Fitta,(Coker fg) = Fitta, (qr) = FittAE(pr/p?cE)

Now by the previous discussion for f = A% o, we have

d
Fitta, (qr) = Fitta, (Coker (AE — /\qE‘))

On the other hand,

d
Fitta, (Coker (AE — /\q*E*>> = Fitta, (Coker f).

The equalities and inclusion above imply our claim. O

We can now give the definition of global Zeta elements.
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Definition 3.8. For any element ¢ annihilating qg, we consider zp¢ €
ﬂfl4E H'(E,ad(ps)) to be the image of £.14,, viewed as an element of ﬂfflE a5
by the map N%cg of (3.4).

It follows immeditely from Corollary 3.6, that

d
(3.6) ﬂResp(ZE,g) = £.2E loc

Proof of Theorem 1.1. Notice first that when E = F, we have A = O
and ﬂfflE = /\%. Let ny be the O-Fitting ideal of the congruence module
attached to f. Under our hypothesis, it is known that Fitto(pf/p?) =y
since in that case that the Hecke algebra is complete intersection thanks
to the works of Taylor-Wiles-Fujiwara—Dimitrov (see [1] for the most com-
plete statement). Since the cohomology of the Hilbert—Blumenthal variety
is free over the Hecke algebra again thanks to the work of Dimitrov [1], we
have 7y is the ideal of O generated by

D(ad(py), 1)L (ad(p), 1)

co
TOZF\Z
QFQp”

§r =

with the notation of Theorem 1.1.

Now, we just apply Lemma 3.7 to the case £ = F' and the construction
of Definition 3.8 with § := &;. This gives the construction of the element
zp € NS HY(F,ad(py)). The point (i) now follows from Lemma 3.4 (i), and
the point (ii) is a direct consequence of the construction and of the rela-
tion (3.6). O

3.5. Compatible systems for the norm map.

3.5.1. Construction. We start by the following lemma

Lemma 3.9. Let E’/F be an extension of F' contained in E. Then the
base change map Tg — Tpg is surjective. In particular, the induced map
g — qg is surjective and for any ¢ € qJ;, there exists a unique ¢’ € q},
such that the following diagram of Ag-module commutes

~ ¢
——qp —> Ag

QAE/O®04>QTE/O ®)‘fE @)
i i |,
~ o
Onpr)o ®O0 —=Qr,, 0 @, O ==1dp — ~ > Ap

where 7E, is induced by Gal(E/F) — Gal(E'/F) and the left vertical
arrows are induced by the base change maps Ap — Ags and Ty — Tgr.
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Proof. Let Rg be the universal nearly ordinary (at places dividing p) de-
formation ring with fixed determinant equal to wecy. of G unramified at
places not dividing np (see Section 3.7 for the precise definition). It follows
from [6, Prop. 3.1] that R — Rpr is surjective. Since for every extension
E, the canonical map R% — Tg is surjective, we deduce that T — T
is surjective. This implies immediately that gg — qg/ is surjective. On
the other hand, we see easily from the exact sequence (3.1) for E and E’,
that the kernel of the surjective map qp ®4, Apr — qg is O-torsion. We
deduce easily the rest of the Lemma from the surjectivity and that last
observation. O

By the previous lemma, ¢ — ¢’ defines a Apg-linear map
~E ~
Tt dp — g

where the action of A onto qgr is given via the ring homomorphism Wg/.
Similarly, we have a map (4,0 ® O)* = (Q,,/0 ® O)* that we denote
%g, too. We deduce that we have a canonical diagram

(/0 ®0) ~— G —> H'(F,ad(py) ® Ap) == H'(E,ad(py))
CUN |+ |t 78 |
~ CE
(Qn,,/0 @ 0)* <—Tj —> HY(F,ad(py) @ Apr) == H'(E',ad(py))

where N 5, stands for the natural corestriction or norm map. We can now
choose the isomorphisms (3.5) so that for any extension E/E’ as before,
the following diagram commutes.

Ny Uy ©0 —— Ap
|
Ny Qo ® 0 —> Api
The following lemma results from the above discussion.

Lemma 3.10. With the previous notations, we have canonical commuta-
tive diagram:

N'ex

N4, 5 N4, HY(E,ad(ps))

l | |

Ny, T ——= N, H'(E',ad(py))
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3.5.2. Compatible systems. The goal of this section is to now explain
the definition and construction of compatible systems under the norm map
of zeta elements and Galois cohomology classes. We start by defining a class
of sets of abelian extensions of F'.

Definition 3.11. Let S be a finite set of places of F'. A set § of abelian
extensions of F' is said S-admissible if

(i) For all E € §, E/F is unramified at places in S,
(ii) For any E,E’ € § with E C FE’, if the index of ramification in
E’ of a place w of E is divisible by p, then E’ contains the maxi-
mal p-abelian extension of F' unramified away from the places of F
dividing w.
For E'/E as in (ii), we denote by Ram(E’/E) the set of place of F which
ramify in E' but not in E.

In the next sections, we will discuss how one can choose elements &
satisfying the condition of Definition 3.8 in an optimal way when E varies
in an S-admissible set of abelian extension of F'. We will explain how this
is connected to the existence of an Euler system of rank d whose definition
we now recall.

Definition 3.12. Let S be a finite set of primes of F' and (py,V) be a
p-adic representation of Gp which is unramified away from finitely many
primes S and p:

PV - GF — GLL(V)
Let § an S-admissible set of abelian extensions of F. An Euler system of
rank d for a Gp-stable O-lattice T' C V is a collection of elements (zg) peg
with zp € MNa, HY(E,T) for each E € § such that for any E', E € § with
E' O E, we have:

q
ﬂ CoresZ (zp/) = H Py(g, oupi V) 2
Ag veERam(E’/E)

where

° ﬂiE Coresgl is the norm map induced by the corestriction map in
Galois cohomology

q q q
() Corest : ( H'(E',T) — (H'(E,T),
AE AE’ AE

e P,(X;V)=dety(1— Xpy(Froby,)),
e 0,  is the geometric Frobenius in Gal(E/F) at v.
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Definition 3.13. Let § as above. A compatible system of equivariant num-
bers for V, S and § is the data of elements £ € Ap for each F € § such
that for any E', E € § with E/ D E, we have:

Npyp€e)= [  Pole'oweV)-ée
v€ERam(E'/E)
where Npy/p is the natural projection map Apr — Ap,
For V' = ad(py), we say that such a system is a compatible system of con-
gruence numbers (resp. of congruence anihilators) if ég € Fitta, (pr/p%)
(resp. if &g annihilates pp/p%) for each E € .

An typical example of compatible system of elements in Ag as in the def-
inition above is given by the equivariant L-values as defined in Section 2.4.

Corollary 3.14. If ({g) geg is a compatible system of congruence numbers,
then (2g¢,) ez is an Euler system of rank d.

Proof. 1t is a straightforward consequence from the definitions, the con-
struction and Lemma 3.10. O

For any hp = X uphw € @up H'(Ig,,0)%"/1rw | let us denote by
lpy the O-linear form on Q2,0 ® O — O induced by the isomorphisms
of Lemma 3.3 (iii). The following corollary gives many Euler systems with
prescribed conditions at each place dividing p.

Corollary 3.15. If (g) geg is a compatible system of congruence annihila-
tors, then for any h := (hg)g € m . Dy, HY(Ig,,0)%F/1Pu the system
of classes (c) pez defined by

C% = CE(&‘E'E}LE) VEES
defines an Euler system of rank 1. Moreover, for each place w of E dividing
p above the place v of F, we have res,(cly) € H'(Ig,,FJ) and its image

res) (ch) by the map H'(E,, F?) — H'(I,,Cr0) = H'(I,,0) is given by
res () =€ - hy.

Proof. We just need to ensure the definition is meaningful. The norm rela-
tions on the classes will follow from the definitions and the diagram (3.7).
For each E € §, let tg be the image in qg of the O-torsion submodule of
qg. From the arguments of the beginning of the proof of Lemma 3.7, we
have an exact sequence

0 —dp — (0 ®0)" — ((ap)/te)” — 0

where * means O-dual and V means Pontrjagin dual. Since {g annihilates
qg, we deduce that &g - £}, € qj and therefore we can evaluate cg on this
elements. The local property follows from the discussions of Corollary 3.4
and the discussion preceding it. O
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3.6. Variants.

3.6.1. Twasawa theory variant. We now give a variant of the construc-
tions made in the previous section. For any field totally real field F as in the
previous section, we denote by FEcy. the cyclotomic Z,-extension of F, and
by E, C Ecyc the intermediate extension of degree p"™ over E/. We define the
objects AW, g qi¥, cl¥, HL (E,-) as the projective limit over n for the
norm or corestriction maps of the objects Ag,, g, , 45,, cg,, Hi,(En, ).
It is straightforward to prove by taking projective limits to see that the
results and constructions of the previous section go mutatis mutandis with
the obvious modifications.

3.6.2. Hida family variant. Similarly we can define the objects and
constructions of the previous sections and its Iwasawa theory variant by
replacing f by families of modular forms. We leave this to the interested
reader.

3.7. Deformations rings and Selmer groups. The goal of this section
is to recall the relation between the modules qg’s and Selmer groups in
orders to exhibit a system of annihilators of congruence modules.

Let LC Np be the category of local noetherian complete O-algebras with
residue field kK = O/wp. Let E/F as in the previous sections. We denote
by Ram(E/F) the places of F' which are ramified in the extension E/F.
Recall that S is a finite set of places of F' containing those dividing np and
Ram(FE/F). We consider the deformation functor:

F2: LCNp — Set
where F3(A) is the set of strict equivalence classes of deformations
p: Gg — GLy(A)

such that

p (mod my) = ps (mod wop),

p is unramified at places not dividing those in S U {p},
p is nearly ordinary at each place w above p

det p = we

cyc

It is well known by now classical arguments originally due Mazur, that this
functor is representable by a local complete noetherian O-algebra Rp. See
for example [6]. Let Ag: Rgp — O be the homomorphism corresponding to
the Galois representation p¢, and pr, := Ker(Ag). It is proved in loc. cit.
using again arguments due to Mazur that there is an isomorphism

Homo (pR /9y K/O) = Sels(E, ad(py))
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where Selg(E,ad(ps) is the Selmer group defined as the kernel of the fol-
lowing restriction map:

H'(Gal(Q/E), ad(py) © K/O)
— [ H'(I,,ad(py) © K/O) & @ H' (I, ad(pu) /Ff (ad(py)) ® K/O)
vé¢SE v|p

For any extension E/F which is unramified above places outside S and
those dividing p, we extend the definition by defining Selg(E,ad(py)) to
be the inductive limit of Selg(E’,ad(py)) when E runs in the set of finite
extension of F' contained in F. In particular, we can define

Sels(EV, py) = lim Sels(En, py)

It follows from result of Taylor—Wiles—Fujiwara and Hida [6], that this
Selmer group is co-torsion over A}}°. We denote by E%f}lg the AY°-Fitting
ideal of the Pontryagin dual of Selg(E%, py).

Lemma 3.16. Let E and S as above, then we have £}3’?}g C FittA%yc(qIEW).

Proof. For each integer n, by the universal property of Rp,, we have a
surjective® homomorphism:

such that Ag, := Ag, o t¢yn. By surjectivity of ¢, we have a surjection of
Ag, -torsion modules:
2 2
ORg, [ORE, — Ofo,/Ots, = 9B,

By passing to the projective limit over n, we deduce a surjective homomor-
phism of A%“-torsion modules:

Sels(EY°,ad(py))" — a’
which implies our claim. O
3.8. Proof of the main Theorems. Using the Iwasawa version of Corol-
lary 3.14 and 3.15, it just suffices to construct compatible system of con-

gruence number in AIEW . We will do so using Lemma 3.16. We start by the
following elementary lemma.

Lemma 3.17. For each E € § like in Definition 3.13, let I C AIEW be
a non zero ideal such that for any E', F € § such that £ C E’, we have
T E(Ip) = Qp plp for some Qg g € AEEYV satisfying

e Qp g is not a zero divisor in ALY

3The surjectivity is a classical fact obtained using the local properties of the Galois represen-
tation PTg, -
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e For any F,E',E" € § with E C E' C E”, we have

Qe e =1 5 (Qe E)QE E-

Then there exists a non trivial compatible system of elements ({g)geg such
that £ € Ig for each F € § satisfying the relation g g(§p/) = Qp E-E
for any E', F € § such that E C FE’, for any choice of £p € Ip.

Proof. For each E', E as above let ¢pr p: Ip — Ip such that 7 p(x) =
Qr p¢r g(x) for any € Ig. This is well defined since we assumed that the
Qe E’s are not zero divisors. Moreover ¢ g are surjective by hypothesis,
and they define a projective system for (Ig)gez with surjective transition
maps. Therefore we have a surjection

l'gl IE — IF
E€g,¢.

which implies our claim. O

Proposition 3.18. Let § be a S-admissible set of abelian extension of F.
Let B/, E € § with E C E’ as above. Then we have

S,al -1 _Iw Sal
e elpf)= I Ple'ols) L}
vERam(E'/E)

where

o P,(X,ad(py)) :=det(1 — X.ad(py)(Frob,)),

. J})WE is the image of a geometric Frobenius automorphism at v in

Gal(Eey/F) C (A)*.

Proof. By induction on the cardinality of the set Ram(E’/E), it is sufficient
to prove the result in the following two cases:

(a) Ram(E'/E) =0,

(b) Ram(E"/E) = {vo},
The case (a) follows from the isomorphism below which is valid for any
finite set S containing the places dividing the level of f

SelS(Eéyca ad(pf)) = SelS(EcyCa ad(pf))Gal(E//E)

which follows easily from the inflation-restriction exact sequence since
ad(py) has no invariants by G, and because the ramification conditions
are the same on both Selmer groups since E’/F is unramified at all places
where E/F is (see [6] for example). Moreover a class in H} (E, ps) which
is unramified at a place w’ after restriction to E’ is already unramified at
the place w of E below w’ since the ramification index is prime to p, by the
hypothesis on the set §.
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For the case (b), we may assume that E' = EF, where F is the p-
maximal abelian extension of F' unramified away from vg. In that case, we
have

Selsufug} (Eeyes ad(py)) = Sels(Egye, ad(pf))Gal(E'/E)

We argue as in the isomorphism used for (a). We only need to show that
the local condition of a class in H[, (E,ad(py)) that is ramified possibly
at places dividing vy becomes unramified after restriction to E’. This is
obvious since E’ contains the maximal p-abelian extension of F that is
unramified away from vg. From the previous isomorphism, we deduce that

(3.8) mep (L) = Loy
Now consider the exact sequence

0— SelS(EcyCa ad(pf)) — SelSU{Uo}(EcyCa ad(pf))
— H' (I, ad(ps) @ (AR)Y) /T — 0

The left exactness follows from the definition of the ramification conditions
of the Selmer group on the left and the fact due to Shapiro’s lemma that

lig H' (B, ad(ps) @ K/O) = H'(F,ad(py) ®o (AE)")
and

@(Hl(lun ad(pf) ® AV)Dv/Iu)V

w|vo
= H'(I,, ad(py) ® O[Gal(Fy/F)] @ AV)Ps/1)V

where w runs through the set of places of F above vy. The exactness on the
right is a Theorem of Greenberg—Vatsal [3] see also [2, §4.2], from which
we get

(3.9) Lof e = Pualoty ) - £
Combining (3.8) and (3.9), we get (b). O

Proof of Theorem 1.2 and 1.3. Note that Lemma 3.17 applies with Ip =

E%’E}lg as it is straightforward to see that P,(g, ‘o, g) is not a zero divisor

in AIEW since its image on every irreducible component of A%" is clearly
non-zero. By Proposition 3.18 and Lemma 3.17, there exists therefore a
compatible system of congruence numbers ({g)geg such that g = E?’alg C

A = A = O[Gal(Fey/F)]. It now suffices to apply the Iwasawa variant
of Corollaries 3.14 and 3.15 to this system, and we are done. O

Proof of Theorem 1.5 and 1.7. The Conjectures 1.4 and 1.6 state that
ﬁ%afn is respectively a compatible system of congruence numbers and of
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congruence annihilators. It therefore suffices to apply the Iwasawa variant

of Corollaries 3.14 and 3.15 to this system. O
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