Number of points of curves over finite fields in some relative situations from an euclidean point of view
Journal de Théorie des Nombres de Bordeaux, Volume 33 (2021) no. 1, pp. 125-138.

We study the number of rational points of smooth projective curves over finite fields in some relative situations in the spirit of a previous paper [4] from an euclidean point of view. We prove some kinds of relative Weil bounds, derived from Schwarz inequality for some “relative parts” of the diagonal and of the graph of the Frobenius on some euclidean sub-spaces of the numerical space of the product of the curve with itself endowed with the opposite of the intersection product.

Nous étudions le nombre de points rationnels d’une courbe projective lisse sur un corps fini dans certaines situations relatives et dans l’esprit d’un précédent article [4], où nous adoptions un point de vue euclidien. Nous prouvons une borne de Weil relative, conséquence de l’application de l’inégalité de Cauchy–Schwarz à des parties relatives de la diagonale et du graphe du Frobenius dans un sous-espace euclidien du groupe des diviseurs de la surface produit de la courbe avec elle-même, à équivalence numérique près, muni de l’opposé de la forme d’intersection.

Received:
Accepted:
Published online:
DOI: 10.5802/jtnb.1155
Classification: 11G20,  14G05,  14G15,  14H99
Keywords: Curves over a finite field, rational point, Weil bound, Intersection Theory
Emmanuel Hallouin 1; Marc Perret 1

1 Institut de Mathématiques de Toulouse ; UMR 5219, Université de Toulouse ; CNRS, UT2J F-31058 Toulouse, France
@article{JTNB_2021__33_1_125_0,
     author = {Emmanuel Hallouin and Marc Perret},
     title = {Number of points of curves over finite fields in some relative situations from an euclidean point of view},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {125--138},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {33},
     number = {1},
     year = {2021},
     doi = {10.5802/jtnb.1155},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1155/}
}
TY  - JOUR
TI  - Number of points of curves over finite fields in some relative situations from an euclidean point of view
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2021
DA  - 2021///
SP  - 125
EP  - 138
VL  - 33
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1155/
UR  - https://doi.org/10.5802/jtnb.1155
DO  - 10.5802/jtnb.1155
LA  - en
ID  - JTNB_2021__33_1_125_0
ER  - 
%0 Journal Article
%T Number of points of curves over finite fields in some relative situations from an euclidean point of view
%J Journal de Théorie des Nombres de Bordeaux
%D 2021
%P 125-138
%V 33
%N 1
%I Société Arithmétique de Bordeaux
%U https://doi.org/10.5802/jtnb.1155
%R 10.5802/jtnb.1155
%G en
%F JTNB_2021__33_1_125_0
Emmanuel Hallouin; Marc Perret. Number of points of curves over finite fields in some relative situations from an euclidean point of view. Journal de Théorie des Nombres de Bordeaux, Volume 33 (2021) no. 1, pp. 125-138. doi : 10.5802/jtnb.1155. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1155/

[1] Yves Aubry; Marc Perret Coverings of singular curves over finite fields, Manuscr. Math., Volume 88 (1995) no. 4, pp. 467-478 | Article | MR: 1362932 | Zbl: 0862.11042

[2] William Fulton Intersection Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 2, Springer, 1998 | MR: 1644323 | Zbl: 0885.14002

[3] Emmanuel Hallouin; Marc Perret Recursive towers of curves over finite fields using graph theory, Mosc. Math. J., Volume 14 (2014) no. 4, pp. 773-806 | Article | MR: 3292049 | Zbl: 1364.11116

[4] Emmanuel Hallouin; Marc Perret An unified viewpoint for upper bounds for the number of points of curves over finite fields via euclidean geometry and semi-definite symmetric toeplitz matrices, Trans. Am. Math. Soc., Volume 312 (2019), pp. 5409-5451 | Article | MR: 4014282 | Zbl: 1445.11053

[5] Robin Hartshorne Algebraic Geometry, Graduate Texts in Mathematics, 52, Springer, 1977 | Zbl: 0367.14001

[6] Michael A. Tsfasman Some remarks on the asymptotic number of points, Coding theory and algebraic geometry (Luminy, 1991) (Lecture Notes in Mathematics), Volume 1518, Springer, 1991, pp. 178-192 | Article | MR: 1186424 | Zbl: 0806.14023

[7] Sergei G. Vlăduţ; Vladimir Drinfeld Number of points of an algebraic curve, Funct. Anal. Appl., Volume 17 (1983), pp. 53-54 | Article | MR: 695100

[8] André Weil Courbes algébriques et variétés abéliennes, Actualités Scientifiques et Industrielles, 1064, Hermann, 1948 | Zbl: 0037.16202

Cited by Sources: