Serre’s strong conjecture, now a theorem of Khare and Wintenberger, states that every two-dimensional continuous, odd, irreducible mod Galois representation arises from a modular form of a specific minimal weight , level and character . In this short paper we show that the minimal weight is equal to a notion of minimal weight inspired by the recipe for weights introduced by Buzzard, Diamond and Jarvis in [4]. Moreover, using the Breuil–Mézard conjecture we show that both weight recipes are equal to the smallest such that has a crystalline lift of Hodge–Tate type .
La forme forte de la conjecture de Serre, démontrée par Khare et Wintenberger, assure que toute représentation galoisienne modulo , de dimension , continue, irréductible et impaire provient d’une forme modulaire de poids minimal , de niveau et de caractère prescrits. Dans ce court article, nous démontrons que le poids minimal coïncide avec une autre notion de poids minimal, qui est inspirée par la recette pour les poids de introduite par Buzzard, Diamond et Jarvis dans [4]. De plus, en utilisant la conjecture de Breuil–Mézard, nous démontrons que le poids défini par ces recettes équivalentes est égal au plus petit entier tel que possède un relèvement cristallin de type de Hodge–Tate .
Accepted:
Published online:
Keywords: Galois representations, Serre’s modularity conjecture, Breuil–Mézard conjecture
Hanneke Wiersema 1
@article{JTNB_2021__33_1_107_0, author = {Hanneke Wiersema}, title = {Serre weights and the {Breuil{\textendash}M\'ezard} conjecture for modular forms}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {107--124}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {33}, number = {1}, year = {2021}, doi = {10.5802/jtnb.1154}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1154/} }
TY - JOUR AU - Hanneke Wiersema TI - Serre weights and the Breuil–Mézard conjecture for modular forms JO - Journal de théorie des nombres de Bordeaux PY - 2021 SP - 107 EP - 124 VL - 33 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1154/ DO - 10.5802/jtnb.1154 LA - en ID - JTNB_2021__33_1_107_0 ER -
%0 Journal Article %A Hanneke Wiersema %T Serre weights and the Breuil–Mézard conjecture for modular forms %J Journal de théorie des nombres de Bordeaux %D 2021 %P 107-124 %V 33 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1154/ %R 10.5802/jtnb.1154 %G en %F JTNB_2021__33_1_107_0
Hanneke Wiersema. Serre weights and the Breuil–Mézard conjecture for modular forms. Journal de théorie des nombres de Bordeaux, Volume 33 (2021) no. 1, pp. 107-124. doi : 10.5802/jtnb.1154. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1154/
[1] Modular forms in characteristic and special values of their -functions, Duke Math. J., Volume 53 (1986) no. 3, pp. 849-868 | DOI | MR | Zbl
[2] An introduction to the theory of p-adic representations, Geometric Aspects of Dwork Theory. Vol. I, Walter de Gruyter, 2004, pp. 255-292 | DOI | MR | Zbl
[3] Multiplicités modulaires et représentations de et de en , Duke Math. J., Volume 115 (2002) no. 2, pp. 205-310 (With an appendix by Guy Henniart) | DOI | MR | Zbl
[4] On Serre’s conjecture for mod Galois representations over totally real fields, Duke Math. J., Volume 155 (2010) no. 1, pp. 105-161 | DOI | MR | Zbl
[5] A correspondence between representations of local Galois groups and Lie-type groups, -functions and Galois representations (London Mathematical Society Lecture Note Series), Volume 320, Cambridge University Press, 2007, pp. 187-206 | DOI | MR | Zbl
[6] Crystalline lifts of two-dimensional mod automorphic Galois representations, Math. Res. Lett., Volume 25 (2015) no. 1, pp. 43-73 | DOI | MR | Zbl
[7] The weight in Serre’s conjectures on modular forms., Invent. Math., Volume 109 (1992) no. 3, pp. 563-594 | DOI | MR | Zbl
[8] Automorphic lifts of prescribed types, Math. Ann., Volume 350 (2011) no. 1, pp. 107-144 | DOI | MR | Zbl
[9] General Serre weight conjectures, J. Eur. Math. Soc., Volume 20 (2018) no. 12, pp. 2859-2949 | DOI | MR | Zbl
[10] The Breuil–Mézard conjecture for potentially Barsotti–Tate representations, Forum Math. Pi, Volume 2 (2014), e1, 56 pages | DOI | MR | Zbl
[11] The Buzzard–Diamond–Jarvis conjecture for unitary groups, J. Am. Math. Soc., Volume 27 (2014) no. 2, pp. 389-435 | DOI | MR | Zbl
[12] The Breuil–Mézard conjecture for non-scalar split residual representations, Ann. Sci. Éc. Norm. Supér., Volume 48 (2015) no. 6, pp. 1383-1421 | DOI | MR | Zbl
[13] Serreś modularity conjecture (II), Invent. Math., Volume 178 (2009) no. 3, p. 505 | DOI | MR | Zbl
[14] The Fontaine–Mazur conjecture for , J. Am. Math. Soc., Volume 22 (2009) no. 3, pp. 641-690 | DOI | MR | Zbl
[15] Serre weights and Shimura curves, Proc. Lond. Math. Soc., Volume 108 (2014) no. 6, pp. 1471-1500 | DOI | MR | Zbl
[16] On the Breuil–Mézard conjecture, Duke Math. J., Volume 164 (2015) no. 2, pp. 297-359 | DOI | MR | Zbl
[17] Hilbert–Samuel multiplicities of certain deformation rings, Math. Res. Lett., Volume 21 (2014) no. 3, pp. 605-615 | DOI | MR | Zbl
[18] Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math., Volume 15 (1971) no. 4, pp. 259-331 | DOI | Zbl
[19] Linear representations of finite groups, Graduate Texts in Mathematics, 42, Springer, 1977, 172 pages (translated from the second French edition by Leonard L. Scott) | MR | Zbl
[20] Sur les représentations modulaires de degré de , Duke Math. J., Volume 54 (1987) no. 1, pp. 179-230 | DOI | MR | Zbl
[21] Lettre à Mme Hamer, 2 Juillet 2001
[22] On the automorphy of 2-dimensional potentially semi-stable deformation rings of (2018) (https://arxiv.org/abs/1803.07451)
[23] On the modularity of 2-adic potentially semi-stable deformation rings (2019) (https://arxiv.org/abs/1908.06174)
Cited by Sources: