Serre’s strong conjecture, now a theorem of Khare and Wintenberger, states that every two-dimensional continuous, odd, irreducible mod
La forme forte de la conjecture de Serre, démontrée par Khare et Wintenberger, assure que toute représentation galoisienne
Accepté le :
Publié le :
Mots-clés : Galois representations, Serre’s modularity conjecture, Breuil–Mézard conjecture
Hanneke Wiersema 1

@article{JTNB_2021__33_1_107_0, author = {Hanneke Wiersema}, title = {Serre weights and the {Breuil{\textendash}M\'ezard} conjecture for modular forms}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {107--124}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {33}, number = {1}, year = {2021}, doi = {10.5802/jtnb.1154}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1154/} }
TY - JOUR AU - Hanneke Wiersema TI - Serre weights and the Breuil–Mézard conjecture for modular forms JO - Journal de théorie des nombres de Bordeaux PY - 2021 SP - 107 EP - 124 VL - 33 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1154/ DO - 10.5802/jtnb.1154 LA - en ID - JTNB_2021__33_1_107_0 ER -
%0 Journal Article %A Hanneke Wiersema %T Serre weights and the Breuil–Mézard conjecture for modular forms %J Journal de théorie des nombres de Bordeaux %D 2021 %P 107-124 %V 33 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1154/ %R 10.5802/jtnb.1154 %G en %F JTNB_2021__33_1_107_0
Hanneke Wiersema. Serre weights and the Breuil–Mézard conjecture for modular forms. Journal de théorie des nombres de Bordeaux, Tome 33 (2021) no. 1, pp. 107-124. doi : 10.5802/jtnb.1154. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1154/
[1] Modular forms in characteristic
[2] An introduction to the theory of p-adic representations, Geometric Aspects of Dwork Theory. Vol. I, Walter de Gruyter, 2004, pp. 255-292 | DOI | MR | Zbl
[3] Multiplicités modulaires et représentations de
[4] On Serre’s conjecture for mod
[5] A correspondence between representations of local Galois groups and Lie-type groups,
[6] Crystalline lifts of two-dimensional mod
[7] The weight in Serre’s conjectures on modular forms., Invent. Math., Volume 109 (1992) no. 3, pp. 563-594 | DOI | MR | Zbl
[8] Automorphic lifts of prescribed types, Math. Ann., Volume 350 (2011) no. 1, pp. 107-144 | DOI | MR | Zbl
[9] General Serre weight conjectures, J. Eur. Math. Soc., Volume 20 (2018) no. 12, pp. 2859-2949 | DOI | MR | Zbl
[10] The Breuil–Mézard conjecture for potentially Barsotti–Tate representations, Forum Math. Pi, Volume 2 (2014), e1, 56 pages | DOI | MR | Zbl
[11] The Buzzard–Diamond–Jarvis conjecture for unitary groups, J. Am. Math. Soc., Volume 27 (2014) no. 2, pp. 389-435 | DOI | MR | Zbl
[12] The Breuil–Mézard conjecture for non-scalar split residual representations, Ann. Sci. Éc. Norm. Supér., Volume 48 (2015) no. 6, pp. 1383-1421 | DOI | MR | Zbl
[13] Serreś modularity conjecture (II), Invent. Math., Volume 178 (2009) no. 3, p. 505 | DOI | MR | Zbl
[14] The Fontaine–Mazur conjecture for
[15] Serre weights and Shimura curves, Proc. Lond. Math. Soc., Volume 108 (2014) no. 6, pp. 1471-1500 | DOI | MR | Zbl
[16] On the Breuil–Mézard conjecture, Duke Math. J., Volume 164 (2015) no. 2, pp. 297-359 | DOI | MR | Zbl
[17] Hilbert–Samuel multiplicities of certain deformation rings, Math. Res. Lett., Volume 21 (2014) no. 3, pp. 605-615 | DOI | MR | Zbl
[18] Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math., Volume 15 (1971) no. 4, pp. 259-331 | DOI | Zbl
[19] Linear representations of finite groups, Graduate Texts in Mathematics, 42, Springer, 1977, 172 pages (translated from the second French edition by Leonard L. Scott) | MR | Zbl
[20] Sur les représentations modulaires de degré
[21] Lettre à Mme Hamer, 2 Juillet 2001
[22] On the automorphy of 2-dimensional potentially semi-stable deformation rings of
[23] On the modularity of 2-adic potentially semi-stable deformation rings (2019) (https://arxiv.org/abs/1908.06174)
Cité par Sources :