Rational torsion in elliptic curves and the cuspidal subgroup
Journal de Théorie des Nombres de Bordeaux, Tome 30 (2018) no. 1, pp. 81-91.

Soit A une courbe elliptique sur de conducteur N sans facteurs carré, ayant un point rationnel d’ordre un nombre premier r ne divisant pas 6N. On montre alors que r divise l’ordre du sous-groupe cuspidal C de J 0 (N). Si A est une courbe de Weil, on peut la considérer comme une sous-variéte abélienne de J 0 (N). Notre preuve montre plus precisément que r divise l’ordre de AC. De plus, sous les hypothèses plus haut, mais sans supposer que r ne divise pas N, on montre qu’il existe un facteur premier p de N tel que la valeur propre de l’involution d’Atkin–Lehner W p agissant sur la forme modulaire associée à A est égale à -1.

Let A be an elliptic curve over  of square free conductor N that has a rational torsion point of prime order r such that r does not divide 6N. We show that then r divides the order of the cuspidal subgroup C of J 0 (N). If A is optimal, then viewing A as an abelian subvariety of J 0 (N), our proof shows more precisely that r divides the order of AC. Also, under the hypotheses above minus the hypothesis that r does not divide N, we show that for some prime p that divides N, the eigenvalue of the Atkin–Lehner involution W p acting on the newform associated to A is -1.

Reçu le :
Accepté le :
Accepté après révision le :
Publié le :
DOI : https://doi.org/10.5802/jtnb.1017
Classification : 11G05,  14H52
Mots clés : Elliptic curves, torsion subgroup, cuspidal subgroup
@article{JTNB_2018__30_1_81_0,
     author = {Amod Agashe},
     title = {Rational torsion in elliptic curves and the cuspidal subgroup},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {81--91},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {30},
     number = {1},
     year = {2018},
     doi = {10.5802/jtnb.1017},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1017/}
}
Amod Agashe. Rational torsion in elliptic curves and the cuspidal subgroup. Journal de Théorie des Nombres de Bordeaux, Tome 30 (2018) no. 1, pp. 81-91. doi : 10.5802/jtnb.1017. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1017/

[1] Amod Agashe Conjectures concerning the orders of the torsion subgroup, the arithmetic component groups, and the cuspidal subgroup, Exp. Math., Volume 22 (2013) no. 4, pp. 363-366 | Article

[2] Amod Agashe; William A. Stein Visible evidence for the Birch and Swinnerton-Dyer conjecture for modular abelian varieties of analytic rank zero, Math. Comput., Volume 74 (2005) no. 249, pp. 455-484 | Article

[3] A. Oliver L. Atkin; Joseph Lehner Hecke operators on Γ 0 (m), Math. Ann., Volume 185 (1970), pp. 134-160 | Article

[4] Christophe Breuil; Brian Conrad; Fred Diamond; Richard Taylor On the modularity of elliptic curves over : wild 3-adic exercises, J. Am. Math. Soc., Volume 14 (2001) no. 4, pp. 843-939 | Article

[5] Seng-Kiat Chua; San Ling On the rational cuspidal subgroup and the rational torsion points of J 0 (pq), Proc. Am. Math. Soc., Volume 125 (1997) no. 8, pp. 2255-2263 | Article

[6] John E. Cremona Algorithms for modular elliptic curves, Cambridge University Press, 1997, 376 pages

[7] Pierre Deligne; M. Rapoport Les schémas de modules de courbes elliptiques, Modular Functions of one Variable II, Proc. internat. Summer School, Univ. Antwerp 1972 (Lect. Notes Math.) Volume 349 (1973), pp. 143-316

[8] Fred Diamond; John Im Modular forms and modular curves, Seminar on Fermat’s last theorem (CMS Conf. Proc.) Volume 17 (1995), pp. 39-133

[9] Neil Dummigan Rational torsion on optimal curves, Int. J. Number Theory, Volume 1 (2005) no. 4, pp. 513-531 | Article

[10] Matthew Emerton Optimal quotients of modular Jacobians, Math. Ann., Volume 327 (2003) no. 3, pp. 429-458 | Article

[11] Nicholas M. Katz p-adic properties of modular schemes and modular forms, Modular Functions of one Variable III, Proc. internat. Summer School, Univ. Antwerp 1972 (Lect. Notes Math.) Volume 350 (1973), pp. 69-190

[12] Barry Mazur Modular curves and the Eisenstein ideal, Publ. Math., Inst. Hautes Étud. Sci., Volume 47 (1977), pp. 33-186 | Article

[13] Masami Ohta Eisenstein ideals and the rational torsion subgroups of modular Jacobian varieties II, Tokyo J. Math., Volume 37 (2014) no. 2, pp. 273-318 | Article

[14] William A. Stein The Cuspidal Subgroup of J 0 (N) (http://wstein.org/Tables/cuspgroup/index.html)

[15] Glenn Stevens Arithmetic on modular curves, Progress in Mathematics, Volume 20, Birkhäuser, 1982, xvii+214 pages

[16] Glenn Stevens The cuspidal group and special values of L-functions, Trans. Am. Math. Soc., Volume 291 (1985) no. 2, pp. 519-550

[17] Shu-Leung Tang Congruences between modular forms, cyclic isogenies of modular elliptic curves and integrality of p-adic L-functions, Trans. Am. Math. Soc., Volume 349 (1997) no. 2, pp. 837-856 | Article

[18] Vinayak Vatsal Multiplicative subgroups of J 0 (N) and applications to elliptic curves, J. Inst. Math. Jussieu, Volume 4 (2005) no. 2, pp. 281-316 | Article

[19] Hwajong Yoo On Eisenstein ideals and the cuspidal group of J 0 (N), Isr. J. Math., Volume 214 (2016) no. 1, pp. 359-377 | Article

[20] Hwajong Yoo Rational torsion points on Jacobians of modular curves, Acta Arith., Volume 172 (2016) no. 4, pp. 299-304