Let be an elliptic curve over of square free conductor that has a rational torsion point of prime order such that does not divide . We show that then divides the order of the cuspidal subgroup of . If is optimal, then viewing as an abelian subvariety of , our proof shows more precisely that divides the order of . Also, under the hypotheses above minus the hypothesis that does not divide , we show that for some prime that divides , the eigenvalue of the Atkin–Lehner involution acting on the newform associated to is .
Soit une courbe elliptique sur de conducteur sans facteurs carré, ayant un point rationnel d’ordre un nombre premier ne divisant pas . On montre alors que divise l’ordre du sous-groupe cuspidal de . Si est une courbe de Weil, on peut la considérer comme une sous-variéte abélienne de . Notre preuve montre plus precisément que divise l’ordre de . De plus, sous les hypothèses plus haut, mais sans supposer que ne divise pas , on montre qu’il existe un facteur premier de tel que la valeur propre de l’involution d’Atkin–Lehner agissant sur la forme modulaire associée à est égale à .
Accepted:
Revised after acceptance:
Published online:
DOI: 10.5802/jtnb.1017
Mots-clés : Elliptic curves, torsion subgroup, cuspidal subgroup
Amod Agashe 1
@article{JTNB_2018__30_1_81_0, author = {Amod Agashe}, title = {Rational torsion in elliptic curves and the cuspidal subgroup}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {81--91}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {30}, number = {1}, year = {2018}, doi = {10.5802/jtnb.1017}, zbl = {1428.11104}, mrnumber = {3809710}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1017/} }
TY - JOUR AU - Amod Agashe TI - Rational torsion in elliptic curves and the cuspidal subgroup JO - Journal de théorie des nombres de Bordeaux PY - 2018 SP - 81 EP - 91 VL - 30 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1017/ DO - 10.5802/jtnb.1017 LA - en ID - JTNB_2018__30_1_81_0 ER -
%0 Journal Article %A Amod Agashe %T Rational torsion in elliptic curves and the cuspidal subgroup %J Journal de théorie des nombres de Bordeaux %D 2018 %P 81-91 %V 30 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1017/ %R 10.5802/jtnb.1017 %G en %F JTNB_2018__30_1_81_0
Amod Agashe. Rational torsion in elliptic curves and the cuspidal subgroup. Journal de théorie des nombres de Bordeaux, Volume 30 (2018) no. 1, pp. 81-91. doi : 10.5802/jtnb.1017. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1017/
[1] Conjectures concerning the orders of the torsion subgroup, the arithmetic component groups, and the cuspidal subgroup, Exp. Math., Volume 22 (2013) no. 4, pp. 363-366 | DOI | MR | Zbl
[2] Visible evidence for the Birch and Swinnerton-Dyer conjecture for modular abelian varieties of analytic rank zero, Math. Comput., Volume 74 (2005) no. 249, pp. 455-484 | DOI | MR | Zbl
[3] Hecke operators on , Math. Ann., Volume 185 (1970), pp. 134-160 | DOI
[4] On the modularity of elliptic curves over : wild 3-adic exercises, J. Am. Math. Soc., Volume 14 (2001) no. 4, pp. 843-939 | DOI | MR | Zbl
[5] On the rational cuspidal subgroup and the rational torsion points of , Proc. Am. Math. Soc., Volume 125 (1997) no. 8, pp. 2255-2263 | DOI | MR | Zbl
[6] Algorithms for modular elliptic curves, Cambridge University Press, 1997, 376 pages | Zbl
[7] Les schémas de modules de courbes elliptiques, Modular Functions of one Variable II, Proc. internat. Summer School, Univ. Antwerp 1972 (Lect. Notes Math.), Volume 349 (1973), pp. 143-316 | Zbl
[8] Modular forms and modular curves, Seminar on Fermat’s last theorem (CMS Conf. Proc.), Volume 17 (1995), pp. 39-133 | MR | Zbl
[9] Rational torsion on optimal curves, Int. J. Number Theory, Volume 1 (2005) no. 4, pp. 513-531 | DOI | MR | Zbl
[10] Optimal quotients of modular Jacobians, Math. Ann., Volume 327 (2003) no. 3, pp. 429-458 | DOI | MR | Zbl
[11] -adic properties of modular schemes and modular forms, Modular Functions of one Variable III, Proc. internat. Summer School, Univ. Antwerp 1972 (Lect. Notes Math.), Volume 350 (1973), pp. 69-190 | MR | Zbl
[12] Modular curves and the Eisenstein ideal, Publ. Math., Inst. Hautes Étud. Sci., Volume 47 (1977), pp. 33-186 | DOI | Numdam | Zbl
[13] Eisenstein ideals and the rational torsion subgroups of modular Jacobian varieties II, Tokyo J. Math., Volume 37 (2014) no. 2, pp. 273-318 | DOI | MR | Zbl
[14] The Cuspidal Subgroup of (http://wstein.org/Tables/cuspgroup/index.html)
[15] Arithmetic on modular curves, Progress in Mathematics, 20, Birkhäuser, 1982, xvii+214 pages | MR | Zbl
[16] The cuspidal group and special values of -functions, Trans. Am. Math. Soc., Volume 291 (1985) no. 2, pp. 519-550 | MR | Zbl
[17] Congruences between modular forms, cyclic isogenies of modular elliptic curves and integrality of -adic -functions, Trans. Am. Math. Soc., Volume 349 (1997) no. 2, pp. 837-856 | DOI | MR | Zbl
[18] Multiplicative subgroups of and applications to elliptic curves, J. Inst. Math. Jussieu, Volume 4 (2005) no. 2, pp. 281-316 | DOI | MR | Zbl
[19] On Eisenstein ideals and the cuspidal group of , Isr. J. Math., Volume 214 (2016) no. 1, pp. 359-377 | DOI | MR | Zbl
[20] Rational torsion points on Jacobians of modular curves, Acta Arith., Volume 172 (2016) no. 4, pp. 299-304 | MR
Cited by Sources: