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Journal de Théorie des Nombres
de Bordeaux 30 (2018), 81–91

Rational torsion in elliptic curves and the
cuspidal subgroup

par Amod AGASHE

Résumé. Soit A une courbe elliptique sur Q de conducteur N
sans facteurs carré, ayant un point rationnel d’ordre un nombre
premier r ne divisant pas 6N . On montre alors que r divise l’ordre
du sous-groupe cuspidal C de J0(N). Si A est une courbe de Weil,
on peut la considérer comme une sous-variéte abélienne de J0(N).
Notre preuve montre plus precisément que r divise l’ordre de A∩C.
De plus, sous les hypothèses plus haut, mais sans supposer que r ne
divise pas N , on montre qu’il existe un facteur premier p de N tel
que la valeur propre de l’involution d’Atkin–Lehner Wp agissant
sur la forme modulaire associée à A est égale à −1.

Abstract. Let A be an elliptic curve over Q of square free
conductor N that has a rational torsion point of prime order r
such that r does not divide 6N . We show that then r divides
the order of the cuspidal subgroup C of J0(N). If A is optimal,
then viewing A as an abelian subvariety of J0(N), our proof shows
more precisely that r divides the order of A ∩ C. Also, under the
hypotheses above minus the hypothesis that r does not divide N ,
we show that for some prime p that divides N , the eigenvalue of
the Atkin–Lehner involutionWp acting on the newform associated
to A is −1.

1. Introduction
Let A′ be an elliptic curve over Q of square free conductor N and let

A be the optimal curve in the isogeny class (over Q) of A′. Let X0(N)
denote the modular curve over Q associated to Γ0(N), and let J0(N) be
its Jacobian. By [4], we may view A as an abelian variety quotient over
Q of J0(N). By dualizing, A can also be viewed as an abelian subvariety
of J0(N), as we shall do in the rest of this article. The cuspidal subgroup C
of J0(N)(C) is the group of degree zero divisors on X0(N)(C) that are
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supported on the cusps. It is known that C is finite. Since N is square free,
the cusps of X0(N) are defined over Q, so C ⊆ J0(N)(Q)tor.

When N is prime, Mazur [12] showed that C = J0(N)(Q)tor; so in par-
ticular, A(Q)tor ⊆ C. The torsion and cuspidal groups are of independent
interest and importance, and relations between them are of great signifi-
cance. For example, using such a relation, Emerton [10] showed that when
N is prime, the orders of A(Q)tor and the arithmetic component group of A
are the same, which implies a significant cancellation in the formula given by
the second part of the Birch and Swinnerton-Dyer conjecture for A (when
N is prime), which is in accord with the conjecture (see, e.g. [2, §4.3]).

Based on some numerical data of Cremona [6] and Stein [14], we suspect
that A(Q)tor ⊆ C more generally when N is square free, i.e., that again the
cuspidal divisors “explain” the existence of all the rational torsion points
in A. In this paper, we prove the following result in this direction:
Theorem 1.1. Recall that A′ is an elliptic curve over Q of square free
conductor N and A is the optimal curve in the isogeny class of A′. Suppose
r is a prime that does not divide 6N .

(1) If r divides the order of A(Q)tor, then r divides the order of A ∩C
(in particular, r divides the order of the cuspidal subgroup C).

(2) If r divides the order of A′(Q)tor, then r divides the order of the
cuspidal subgroup C.

The proof of the theorem is given in Section 4. The main ingredient in the
proof of part (1) is to show that the hypotheses imply that the newform f
associated to A is congruent to an Eisenstein series E modulo r (the tricky
part is to get the congruence for Fourier coefficients of indices that are not
coprime to N). As part of the proof of this congruence, we show that under
the hypotheses of part (1) of the theorem (but relaxing the hypothesis that
r -N), for at least one prime p that divides N , the sign of the Atkin-Lenher
involution at p acting on f is −1, which is an interesting result on its own
(see Proposition 3.6). Given the congruence between f and E, and the fact
that f is ordinary at r (which we show), a result of Tang [17, Thm. 0.4]
tells us that A[r] has nontrivial intersection with a subgroup of the cuspidal
group C, thus giving us part (1) of the theorem above. Part (2) follows from
part (1) by [9, Thm. 1.2] which says that if ` is a prime such that `2 -N
(which holds for ` = r, given our hypothesis), then if A′ has a rational
torsion point of order `, then so does A (see also Remark 4.1).

By[12, III.5.1], the only primes that can divide the order of A′(Q)tor are 2,
3, 5 and 7, and moreover there is a finite list of possibilities for A′(Q)tor. In
particular, our theorem gives new information only when r is 5 or 7 (and
r - N). We expect that by doing more work (using ideas from [12]), one
should be able to prove that for every prime r - 6N , the r-primary part of
A(Q)tor is contained in C; again, by Mazur’s result mentioned above, this
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gives no new information (since we are assuming that r 6= 2, 3). However,
the hope is that such a result may hold (and the proof may generalize) for
higher-dimensional abelian subvarieties A of J0(N) associated to newforms.
Finally, it would also be desirable to see if the hypothesis that r - 6N can
be removed. The present article may be viewed as our first step in relating
rational torsion of modular abelian varieties to the cuspidal subgroup when
N is square free, as well as generalizing some of the techniques of Mazur [12]
for prime N to square free N .

In any case, the theorem above puts restrictions on when 5 and 7 can
divide the order of A′(Q)tor, and may be useful in its computations, since
the order of the cuspidal subgroup C can be computed (see, e.g., [14]).
It may also be useful theoretically in certain situations where there is an
explicit formula for the order of C. For example, if N is a product of two
primes p and q, then by [5, §3.4], the only odd primes that divide the
order of C are the ones that divide (p2 − 1)(q2 − 1). As a computational
application, taking p = 1013 and q = 10007, we see that 5 and 7 cannot
divide the order of the rational torsion subgroup of any elliptic curve over Q
of conductor N = 1013 · 10007.

We remark that there is significant overlap between the results and tech-
niques of this article, and those of [13], [19], and [20] (which were pointed
out to us by the anonymous referee) and some of the results of this arti-
cle follow from the discussions in the latter articles. However, these latter
articles appeared much after this present article was first written.

The organization of this article is as follows. In Section 2, we show how
to construct certain desirable Eisenstein series. In Section 3, we state some
other preliminary results needed for the proof of Theorem 1.1. These results
concern certain constraints on the Fourier coefficients of f arising out of
the existence of rational r-torsion, and could be of independent interest.
Finally, we give the proof of Theorem 1.1 in Section 4. Note that in any
given section, we continue to use the notation introduced in earlier sections.
Acknowledgement. We are grateful to Barry Mazur for pointing out a
construction that we used in the proof of Proposition 2.1, and to Neil
Dummigan for conveying the proof of Lemma 3.2, as well as for some very
useful comments on an earlier draft.

2. Certain Eisenstein series
If g = g(z) is a modular form, then we will denote its Fourier expansion∑
n≥0 an(g)qn at the cusp ∞ (where q = e2πiz as usual) by g(q). If n is a

positive integer, then σ(n) denotes the sum of all the positive divisors of n.
Proposition 2.1. Recall that N is square free. For every prime p that
divides N , suppose we are given an integer δp ∈ {1, p} such that δp = 1
for at least one p. Then there is an Eisenstein series E of weight 2 on Γ0(N)
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which is an eigenfunction for all the Hecke operators such that for all
primes ` - N , we have a`(E) = ` + 1, and for all primes p | N , we have
ap(E) = δp.
Proof. The normalized Eisenstein series e of weight 2 and level 1 has q-
expansion e(q) = 1/24−

∑
n≥1 σ(n)qn. It is not a modular form of level 1,

but it is an eigenfunction for all the Hecke operators. We shall construct
the desired Eisenstein series by starting with e and “raising the level”.

Let g =
∑
n≥0 an(g)qn be a normalized eigenfunction of some level M

and let r be a prime that does not divide M . Let (Brg)(z) = g(rz). Then
we have (see, e.g., [3, p. 141])

(2.1)

Br
(∑
n≥0

anq
n
)

=
∑
n≥0

anq
nr,

Ur
(∑
n≥0

anq
n
)

=
∑
n≥0

anrq
n,

and T`
(∑
n≥0

anq
n
)

=
∑
n≥0

an`q
n +

∑
n≥0

`anq
n`, ∀ ` -Mr,

where T` and Ur are the usual Hecke operators at levelMr. For the moment,
let Tr denote the r-th Hecke operator of level M ; then equation (2.1) holds
for Tr as well. Thus from the formulas above, we see that Tr = Ur + rBr.
Since g is an eigenfunction for Tr with eigenvalue ar(g), we deduce that
Ur(g) = ar(g) · g − r · Br(g) and Ur(Br(g)) = g. Thus Ur preserves the
complex vector space V generated by g and Br(g), and the characteristic
polynomial of Ur on this subspace is U2

r −ar(g)Ur+r. The elements of V are
eigenvectors for all the other Hecke operators. Now suppose ar(g) = 1 + r,
as will be the case in our application. Then the characteristic polynomial
becomes U2

r − (1 + r)Ur + r, whose roots are 1 and r. Thus the action of Ur
is diagonalizable on V . Moreover, one checks that a basis of normalized
eigenvectors (for all the Hecke operators) is gr = g−r·Br(g) = g(q)−r·g(qr)
and g̃r = g − Br(g) = g(q) − g(qr), with eigenvalues 1 and r respectively
for Ur. If g is actually a modular form, then so are gr and g̃r. Since g is
normalized, ar(gr) = 1 and ar(g̃r) = r. Moreover, since raising levels by r
does not disturb the Fourier coefficients at other primes, for all primes ` 6= r,
we have a`(gr) = a`(g̃r) = a`(g).

Now pick a prime p that divides N such that δp = 1. Taking M = 1,
r = p, and g = e in the discussion above, and considering that ap(e) =
σ(p) = 1+p, we get an Eisenstein series ep that is an eigenvector for all the
Hecke operators such that for all primes ` 6= p, we have a`(ep) = a`(e) =
σ(`) = `+1, and ap(ep) = 1. Moreover, ep is a modular form of level p (see,
e.g., [8, p. 47]). This proves the desired result if N = p.

If another prime s divides N , then we apply the procedure two para-
graphs above, takingM = p, r = s, and g = ep. Since as(ep) = as(e) = 1+s,
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we get an eigenform for all Hecke operators such that for all primes ` -N ,
the `-th Fourier coefficient is `+ 1, the p-th Fourier coefficient is 1, and the
s-th Fourier coefficient may be chosen to be 1 or s. This proves the desired
result if N = ps.

Since N is square free, and raising levels by a prime that divides N does
not disturb the Fourier coefficients at other primes, we see that repeat-
ing the procedure in the previous paragraph we get an eigenform E with
a`(E) = `+ 1 for all primes ` -N , ap(E) = 1, and for all primes s |N with
s 6= p, as(E) can be chosen to be 1 or s. �

The fact that one can construct interesting Eisenstein series by raising
levels as in the proof above was pointed out to us by B. Mazur. In fact, a
series as in the proposition above was used for the special case when N is
prime in [12] (the series e′ in §II.5 on p. 78 in loc. cit.).

3. Some results on Fourier coefficients
As before, f denotes the newform of weight 2 on Γ0(N) associated to A.

Then f has integer Fourier coefficients. Let wp denote the sign of the Atkin–
Lehner involution Wp acting on f . In this section, we discuss how the ex-
istence of rational r-torsion in A puts some restrictions on the Fourier
coefficients of f .

The following lemma is perhaps well known.

Lemma 3.1. Suppose a prime r divides the order of A(Q)tor. Then for all
primes ` -N , we have a`(f) ≡ 1 + ` mod r and if p |N , then ap(f) = −wp.

Proof. The proof of the first claim follows from the discussion in [12, p. 112–
113]; we repeat some of the arguments in loc. cit. for the convenience of the
reader. Let P be a point of order r in A(Q)tor and let G be a finite quotient
of Gal(Q/Q) through which the action of Gal(Q/Q) on J0(N)[r] factors.
Denote by V the (T/rT)[G]-submodule of J0(N)[r] generated by P and by
m the annihilator in T of V . Let S = Spec Z, and let J denote the Néron
model of J0(N) over S. Let V/S denote the quasi-finite subgroup scheme
of J [r] whose associated Galois module is V . Since N is square free, J0(N)
has semi-stable reduction, and the argument at the bottom of p. 113 in [12]
shows that V/S is either µr ⊗Fr T/m or Z/rZ⊗Fr T/m (in our case, since
the eigenvalues of f are integers, T/m ∼= Fr, and since P is defined over Q,
V/S is Z/rZ). In any case, if ` is a prime that does not divide N , then the
Eichler–Shimura relation T` = Frob` +`/Frob` on J/F`

(where `/Frob` is
the Verschiebung of J/F`

) tells us that T` ≡ (1 + `) mod m. In particular,
T` − (1 + `) annihilates P . Since T`P = a`(f)P , we see that T` − a`(f)
annihilates P , and hence so does a`(f) − (1 + `). But P has order r, so r
divides a`(f)− (1 + `), and hence a`(f) ≡ 1 + ` mod r.
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If p | N , then ap(f) = −wp because Up = −Wp on the new subspace
of S2(Γ0(N),C). This finishes the proof of the lemma. �

Keeping in mind the strategy of the proof of our main theorem (The-
orem 1.1) mentioned in the introduction, we see from the lemma above
and Proposition 2.1 that coming up with an Eisenstein series E such that
a`(f) ≡ a`(E) mod r for all primes ` -N is rather easy. Proving the congru-
ence for all ` |N for a suitable Eisenstein series is the tricky part, for which
we need the results below.

The following lemma is stated as a fact without a detailed proof in [9,
§4]; the ingredients of the proof were communicated to us by N. Dummigan.
The referee of this article has also pointed out that a generalization of the
lemma below can be seen in the proof of [20, Lemma 2.1].

Lemma 3.2 (Dummigan). Let r be an odd prime that divides the order
of A(Q)tor. If p is a prime that divides N such that wp = 1, then r |(p+ 1).

Proof. By the hypothesis, there is a nontrivial point P in A(Q)[r]. Then
P ∈ A(Qp)[r]. Since p2 -N (as N is square free) and wp = 1, the elliptic
curve A has non-split multiplicative reduction at p. Thus there is a q ∈ Q∗p
and a Tate curve Eq over Qp, such that A is isomorphic to Eq over an
unramified quadratic extension K of Qp. Now Eq(Qp) ∼= Qp/q

Z over Qp;
let x ∈ Qp be such that its image is in Eq(Qp)[r] corresponds to P . Since
rP = 0, we have xr ∈ qZ, i.e., xr = qn for some n ∈ Z. Let ζr be a primitive
root of unity in Qp, and let q1/r denote a choice of a root of Xr = q in Qp.
Then x = ζar q

b/r, for some a, b ∈ {0, . . . , r − 1}.
Since K is unramified over Qp, its Galois group is generated by the

Frobenius endomorphism, which we will denote by σ. Now A(Qp)[r] is the
same as Eq(Qp)[r], except that the Galois action on A(Qp)[r] is twisted
by a nontrivial unramified quadratic character. Thus since P ∈ A(Qp), we
have σ(x) = 1/xmodulo qZ. So the valuation of σ(x)x is an integer multiple
of that of q, and since σ preserves valuations, we have 2b/r ∈ Z. If b 6= 0,
then this is possible only if r = 2.

Now consider the case where b = 0. Then a 6= 0, and x = ζar . If ζr 6∈ Qp,
then σ(ζar ) = ζapr and so ζapr = 1/ζar . Since ζar is also a primitive r-th root of
unity, we have r |(p+1). If ζr ∈ Qp, then since σ fixes ζr, we have ζr = 1/ζr,
i.e., r = 2. This proves the lemma. �

Remark 3.3. In the lemma above, the hypothesis that r is odd is necessary.
For example, the elliptic curve 14A1 has rational 2-torsion and w2 = 1
(taking r = p = 2, we do not have r |(p+ 1)).

Corollary 3.4. Let r be an odd prime that divides the order of A(Q)tor. If
r |N , then wr = −1.
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Proof. If wr = 1, then by Lemma 3.2 (taking p = r), r | (r + 1), i.e., r | 1,
which is impossible. So wr = −1. �

Following [12, p. 77 and p. 70], by a holomorphic modular form in ω⊗k
on Γ0(N) defined over a ring R, we mean a modular form in the sense of [11,
§1.3] (see also [7, §VII.3]). Thus such an object is a rule which assigns to
each pair (E/T , H), where E is an elliptic curve over an R-scheme T and H
is a finite flat subgroup scheme of E/T of order N , a section of ω⊗2

E/T
, where

ωE/T
is the sheaf of invariant differentials. If r is a prime such that r - 6N

and f is a modular form of weight 2 on Γ0(N) with coefficients in Z[ 1
6N ],

then by [12, Lemma II.4.8], there is a holomorphic modular form in ω⊗2

on Γ0(N) defined over Z/rZ, which we will denote f mod r, such that the
q-expansion of f mod r agrees with the q-expansion of f modulo r.

Lemma 3.5 (Mazur). Let R be a ring such that 1/N ∈ R. Let g be a
holomorphic modular form in ω⊗k on Γ0(N) defined over R. Suppose that
for some prime p that divides N , the q-expansion of g is a power series
in qp, i.e., there is h(q) ∈ R[[q]] such that g(q) = h(qp). Then h(q) is the
q-expansion of a holomorphic modular form in ω⊗k on Γ0(N/p) defined
over R.

Proof. The lemma is proved in [12] under the condition that N is prime,
and p = N (Lemma II.5.9 in loc. cit.). The same proof works mutatis
mutandis to give the lemma above, with the only change to be made being
to replace certain occurrences of N by p (e.g., qN becomes qp everywhere)
and the occurrences of N − 1 at the bottom of p. 84 in [12] by φ(N), where
φ is the Euler φ-function. �

Proposition 3.6. Suppose there is a prime r bigger than 3 such that r di-
vides the order of A(Q)tor. Then there is a prime p that divides N such
that wp = −1.

Proof. Suppose, contrary to the conclusion of the lemma, that for every
prime p that divides N , we have wp = 1. By Corollary 3.4, r -N .

If M is a postive integer, then let us say that a holomorphic modu-
lar form g in ω⊗2 on Γ0(M) defined over Z/rZ is special at level M if
an(g) ≡ σ( n

(n,M))
∏
p|M (−1)ordp(n) mod r for all positive integers n. Using

Lemma 3.1 and the fact that f is an eigenvector for all the Hecke operators,
we see that f mod r is special at level N .

Claim. If M is a square free integer and g is a holomorphic modular form
in ω⊗2 on Γ0(M) defined over Z/rZ that is special at level M and s is a
prime that divides M , then there exists a holomorphic modular form in ω⊗2

on Γ0(M/s) defined over Z/rZ that is special at level M/s (which is also
square free).
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Proof of the claim. By Proposition 2.1, there is an Eisenstein series E which
is an eigenvector for all the Hecke operators, with a`(E) = ` + 1 for all
primes ` -M , ap(E) = p for all primes p that divide M except p = s, and
as(E) = 1. Let p1, . . . , pt be the distinct primes that divide M/s. Then for
any positive integer n,

an(E) ≡ σ
(

n

(n,M)

) t∏
i=1

pi
ordpi (n) mod r.

Since by Lemma 3.2, pi ≡ −1 mod r for i = 1, . . . , t, we see that an(E) ≡
an(g) mod r if n is coprime to s, and thus (E(q) − g(q)) mod r is a power
series in qs, i.e., there is an h(q) ∈ (Z/rZ)[[q]] with h(qs) ≡ (E(q) −
g(q)) mod r. By Lemma 3.5, h(q) is the q-expansion of a holomorphic mod-
ular form, which we again denote h, in ω⊗2 on Γ0(M/s) defined over Z/rZ.

Let g′ = h/2. We shall now show that g′ is special of level M/s. Let n
be a positive integer, m′ = n

(n,s) , and e = ords(n) (so n = m′se). Then

(3.1) an(h) = am′se(h) ≡ am′se+1(E−g) = am′se+1(E)−am′se+1(g) mod r.

Now an(E) = am′(E)ase+1(E) since E is an eigenfunction and an(g) ≡
am′(g)ase+1(g) mod r since g is special. Putting this in (3.1), we get

(3.2)
an(h) ≡ am′(E)ase+1(E)− am′(g)ase+1(g)

≡ am′(g)(as(E)e+1 − as(g)e+1) mod r,

where the last congruence follows since am′(g) ≡ am′(E) mod r, considering
that m′ is coprime to s. Now

(3.3) as(E)e+1 − as(g)e+1 = 1− (−1)e+1 ≡ 1− se+1 mod r,

since by Lemma 3.2, s ≡ −1 mod r. Also,

(3.4) 1− se+1 = (1− s)(1 + s+ · · ·+ se) ≡ 2σ(se) mod r,

again considering that by Lemma 3.2, s ≡ −1 mod r. Thus putting (3.4)
in (3.3), and the result in (3.2), we get

(3.5)
an(h) ≡ am′(g) · 2σ(se)

≡ 2σ
(

m′

(m′,M)

) ∏
p|M

(−1)ordp(m′) · σ(se) mod r,

where the last congruence follows since g is special at level M . Now since
n = m′se, with m′ coprime to s and s -(M/s), we have

(3.6)
σ

(
m′

(m′,M)

)
σ(se) = σ

(
m′se

(m′,M)

)
= σ

(
m′se

(m′se,M/s)

)
= σ

(
n

(n,M/s)

)
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and

(3.7)
∏
p|M

(−1)ordp(m′) =
∏

p|M, p6=s
(−1)ordp(m′se) =

∏
p|(M/s)

(−1)ordp(n).

Using (3.6) and (3.7) in (3.5), and recalling that g′ = h/2, we see that

an(g′) ≡ σ
(

n

(n,M/s)

) ∏
p|(M/s)

(−1)ordp(n) mod r,

i.e., g′ is special of level M/s. �

Starting with f mod r (note that r -6N), and repeatedly using the claim,
we see that there is a holomorphic modular form that is special of level 1,
which is nontrivial since the coefficient of q is 1 mod r for a special form (of
any level). But by [12, Lemma II.5.6(a)], there are no nontrivial holomor-
phic modular forms of level 1 in ω⊗2 defined over a field of characteristic
other than 2 and 3. This contradiction proves the lemma. �

In the proof above, the idea of “lowering levels” and getting a contradic-
tion is taken from an observation in [12], where N is prime and the level is
“lowered” only once (see the proof of Prop. II.14.1 on p. 114 of loc. cit.).
We noticed that the Fourier coefficients work out so nicely (in view of
Lemma 3.2) that the “level lowering” process can be repeated (when N is
not necessarily prime), giving the proof above.

Remark 3.7. After a first draft of this paper was written, based on numer-
ical evidence, the author had conjectured in [1] that if N is squarefree and
the odd part of E(Q)tor is non-trivial, then wp = −1 for at least one prime p
that divides N . This was proved recently by D. Lorenzini (preprint). His
techniques use explicit Weierstrass equations, and we hope that our proof
of Proposition 3.6 may still be useful if the main result of this article were
to be generalized to higher-dimensional abelian subvarieties A of J0(N)
associated to newforms.

4. Proof of Theorem 1.1
Recall that the hypotheses are that N is a square free integer and r is a

prime such that r -6N and r divides the order of A(Q)tor. We have to show
that r divides the order of the cuspidal subgroup C.

If p is a prime that divides N , then let δp = −wp if wp = −1 and δp = p
if wp = 1. By Proposition 3.6, for at least one p, we have wp = −1, i.e.,
δp = 1. Hence by Proposition 2.1, there is an Eisenstein series E such
that for all primes ` -N , we have a`(E) = ` + 1, and for all primes p |N ,
ap(E) = 1 = −wp if wp = −1 and ap(E) = p if wp = 1. In view of
Lemma 3.2, if p | N and wp = 1, we have ap(E) = p ≡ −1 = −wp mod r.
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Considering that f and E are eigenfunctions for all the Hecke opera-
tors, we see from the paragraph above and by Lemma 3.1 that an(f) ≡
an(E) mod r for all n ≥ 1. Hence (f(q) − E(q)) mod r is a constant; call
this constant c. Since r - 6N , we may consider the holomorphic modular
form (f−E) mod r in ω⊗2 on Γ0(N) defined over Z/rZ. Using Lemma 3.5,
for any prime p dividing N we get a holomorphic modular form in ω⊗2

on Γ0(N/p) defined over Z/rZ, whose q-expansion is the same constant c.
By repeating this process (which we can do since at each stage we have
a q-expansion that is constant – in fact, the same constant c), we get a
holomorphic modular form in ω⊗2 on Γ0(1) defined over Z/rZ, whose q-
expansion is c. By [12, Lemma II.5.6(a)], there are no nontrivial holomor-
phic modular forms of level 1 in ω⊗2 defined over a field of characteristic
other than 2 and 3. Thus c ≡ 0 mod r, and so an(f) ≡ an(E) mod r for
n = 0 as well. Hence f ≡ E mod r.

To E is associated a subgroup CE of C by Stevens (see [15, Def. 1.8.5]
and [16, Def. 4.1]). Since r -N , by Lemma 3.1, ar ≡ (1 + r) ≡ 1 mod r; in
particular, f is ordinary at r. By [17, Thm. 0.4], A[r]∩CE 6= 0, and thus r
divides the order of A ∩C. The fact that r divides the order of CE follows
from the intermediate result Prop. 1.9 of [17] as well. This proves part (1)
of Theorem 1.1. As mentioned in the introduction, part (2) follows from
part (1) by taking ` = r in [9, Thm. 1.2] (Dummigan’s theorem in turn
follows from the proof of Prop. 5.3 in [18]).

Remark 4.1. Neil Dummigan remarked to us that one need not use [9,
Thm. 1.2] to deduce part (2) of Theorem 1.1 from part (1) since our methods
prove a special case of [9, Thm. 1.2] that if A′ is an elliptic curve of square
free conductor N having a rational point of order r for a prime r such that
r -6N , then the optimal curve A in the isogeny class of A′ also has a rational
point of order r. Clearly, this shows that part (2) implies part (1). The
proof of the claim above is as follows: Lemma 3.1 holds with A replaced by
A′ under the additional hypothesis that r is odd (by considering reduction
modulo `, we see that if ` is a prime such that ` -N , then r divides |A′(F`)| =
|A(F`)| = a`(f)− (1 + `)) and Lemma 3.2 also holds with A replaced by A′
(the fact that wp = 1 implies that A has non-split multiplicative reduction;
hence so does A′ and the proof goes through with A replaced by A′). In
the proofs of Proposition 3.6 and Theorem 1.1, the only place where the
hypothesis that A has a rational point of order r is used is in quoting
Lemmas 3.1 and 3.2. Since the conclusions of these Lemmas hold under the
hypothesis that A′ (instead of A) has a rational point of order r (and the
hypothesis that r is odd, which is already assumed in Theorem 1.1), the
proof of Theorem 1.1 goes through to prove that A has a rational point of
order r, as claimed.
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