On a variant of Schanuel conjecture for the Carlitz exponential
Journal de Théorie des Nombres de Bordeaux, Tome 29 (2017) no. 3, pp. 845-873.

Nous introduisons et décrivons une variante de la conjecture de Schanuel dans le cadre de l’exponentielle de Carlitz sur des algèbres de Tate et de fonctions similaires. Un autre objectif de ce travail est de stimuler des possibles investigations en transcendance et indépendance algébrique en caractéristique non nulle.

We introduce and discuss a variant of Schanuel conjecture in the framework of the Carlitz exponential function over Tate algebras and allied functions. Another purpose of the present paper is to widen the horizons of possible investigations in transcendence and algebraic independence in positive characteristic.

Reçu le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/jtnb.1004
Classification : 11M38
Mots clés : Multiple zeta values, Carlitz module, Schanuel’s conjecture.
@article{JTNB_2017__29_3_845_0,
     author = {Federico Pellarin},
     title = {On a variant of {Schanuel} conjecture for the {Carlitz} exponential},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {845--873},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {29},
     number = {3},
     year = {2017},
     doi = {10.5802/jtnb.1004},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1004/}
}
Federico Pellarin. On a variant of Schanuel conjecture for the Carlitz exponential. Journal de Théorie des Nombres de Bordeaux, Tome 29 (2017) no. 3, pp. 845-873. doi : 10.5802/jtnb.1004. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1004/

[1] Greg W. Anderson; W. Dale Brownawell; Matthew A. Papanikolas Determination of the algebraic relations among special Γ-values in positive characteristic, Ann. Math., Volume 160 (2004) no. 1, pp. 237-313 | Article | Zbl 1064.11055

[2] Bruno Anglès; Federico Pellarin Functional identities for L-series values in positive characteristic, J. Number Theory, Volume 142 (2014), pp. 223-251 | Article | Zbl 06335919

[3] Bruno Anglès; Federico Pellarin Universal Gauss-Thakur sums and L-series, Invent. Math., Volume 200 (2015) no. 2, pp. 653-669 | Article | Zbl 1321.11053

[4] Bruno Anglès; Federico Pellarin; Floric Tavares Ribeiro Arithmetic of positive characteristic L-series values in Tate algebras, Compos. Math., Volume 152 (2016) no. 1, pp. 1-61 (with an appendix of Florent Demeslay) | Article | Zbl 1336.11042

[5] Bruno Anglès; Federico Pellarin; Floric Tavares Ribeiro Anderson-Stark units for 𝔽 q [θ], Trans. Am. Math. Soc. (2017) (https://doi.org/10.1090/tran/6994 (to appear in print)) | Article

[6] James Ax On Schanuel’s Conjectures, Ann. Math., Volume 93 (1971), pp. 252-268 | Article | Zbl 0232.10026

[7] Frits Beukers A refined version of the Siegel-Shidlovskii theorem, Ann. Math., Volume 163 (2006) no. 1, pp. 369-379 | Article | Zbl 1133.11044

[8] Siegfried Bosch; Ulrich Güntzer; Reinhold Remmert Non-Archimedean analysis. A systematic approach to rigid analytic geometry, Grundlehren der Mathematischen Wissenschaften, Volume 261, Springer, 1984, xii+436 pages | Zbl 0539.14017

[9] Leonard Carlitz On certain functions connected with polynomials in a Galois field, Duke Math. J., Volume 1 (1935), pp. 137-168 | Article | Zbl 0012.04904

[10] Chieh-Yu Chang Linear independence of monomials of multizeta values in positive characteristic, Compos. Math., Volume 150 (2014) no. 11, pp. 1789-1808 | Article | Zbl 1306.11058

[11] Chieh-Yu Chang; Jing Yu Determination of algebraic relations among special zeta values in positive characteristic, Adv. Math., Volume 216 (2007) no. 1, pp. 321-345 | Article | Zbl 1123.11025

[12] Laurent Denis Indépendance algébrique et exponentielle de Carlitz, Acta Arith., Volume 69 (1995) no. 1, pp. 75-89 | Article | Zbl 0823.11032

[13] Laurent Denis Indépendance algébrique de logarithmes en caractéristique p, Bull. Aust. Math. Soc., Volume 74 (2006) no. 3, pp. 461-470 | Article | Zbl 1116.11058

[14] David Goss Basic Structures of Function Field Arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3, Volume 35, Springer, 1996, xiii+422 pages | Zbl 0874.11004

[15] Serge Lang Introduction to transcendental numbers, Addison-Wesley Series in Mathematics, Addison-Wesley Publishing Company, 1966, vi+105 pages | Zbl 0144.04101

[16] Alexander B. Levin Difference algebra, Algebra and Applications, Volume 8, Springer, 2008, xi+519 pages | Zbl 1209.12003

[17] David Marker A remark on Zilber’s pseudoexponentiation, J. Symb. Log., Volume 71 (2006) no. 3, pp. 791-798 | Article | Zbl 1112.03029

[18] Matthew A. Papanikolas Tannakian duality for Anderson-Drinfeld motives and algebraic independence of Carlitz logarithms, Invent. Math., Volume 171 (2008) no. 1, pp. 123-174 | Article | Zbl 1235.11074

[19] Federico Pellarin Aspects de l’indépendance algébrique en caractéristique non nulle, Séminaire Bourbaki. Volume 2006/2007. Exposés 967–981 (Astérisque) Volume 317 (2008), p. 205-242, Exp no. 973 | Zbl 1185.11048

[20] Federico Pellarin On the generalized Carlitz module, J. Number Theory, Volume 133 (2013) no. 5, pp. 1663-1692 | Article | Zbl 1292.11068

[21] Thomas Scanlon o-minimality as an approach to the André-Oort conjecture (To appear in Panor. Synth.)

[22] Alain Thiery Indépendance algébrique des périodes et quasi-périodes d’un module de Drinfeld, The arithmetic of function fields. Proceedings of the workshop at the Ohio State University (Ohio State University Mathematical Research Institute Publications) Volume 2, Walter de Gruyter, 1992, pp. 265-284 | Zbl 0798.11021

[23] Paul M. Voutier (Letter to the author, June, 20, 2016)

[24] L. I. Wade Certain quantities transcendental over GF(p n ,x), Duke Math. J., Volume 8 (1941), pp. 701-720 | Article | Zbl 0063.08101

[25] Michel Waldschmidt Schanuel’s Conjecture: algebraic independence of transcendental numbers, Colloquium De Giorgi 2013 and 2014 (Colloquia) Volume 5 (xv+137), pp. 129-137 | Zbl 06592431

[26] Jing Yu Analytic homomorphisms into Drinfeld modules, Ann. Math., Volume 145 (1997) no. 2, pp. 215-233 | Article | Zbl 0881.11055