On certain Drinfeld modular forms of higher rank
Journal de Théorie des Nombres de Bordeaux, Volume 29 (2017) no. 3, pp. 827-843.

We give an introduction to Drinfeld modular forms for principal congruence subgroups of GL r (𝔽 q [t]), and then construct a rank r analogue of the h-function. We show that this function is a cusp form of weight (q r -1)/(q-1) and type 1 which satisfies a product formula. Along the way, we compute the expansion at infinity of weight one Eisenstein series of level N𝔽 q [t].

Nous donnons une introduction aux formes modulaires de Drinfeld pour des sous-groupes de congruence principaux de GL r (𝔽 q [t]), et puis nous construisons un analogue en rang r de la fonction h. Nous montrons que cette fonction est cuspidale de poids (q r -1)/(q-1) et de type 1 et qu’elle satisfait une formule de produit. Dans ce but, nous calculons le développement à l’infini des séries d’Eisenstein de poids 1 et de nivaux N𝔽 q [t].

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/jtnb.1003
Classification: 11F52,  11G09
Keywords: Drinfeld modular forms, Drinfeld modules
@article{JTNB_2017__29_3_827_0,
     author = {Dirk Basson and Florian Breuer},
     title = {On certain {Drinfeld} modular forms of higher rank},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {827--843},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {29},
     number = {3},
     year = {2017},
     doi = {10.5802/jtnb.1003},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1003/}
}
TY  - JOUR
TI  - On certain Drinfeld modular forms of higher rank
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2017
DA  - 2017///
SP  - 827
EP  - 843
VL  - 29
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1003/
UR  - https://doi.org/10.5802/jtnb.1003
DO  - 10.5802/jtnb.1003
LA  - en
ID  - JTNB_2017__29_3_827_0
ER  - 
%0 Journal Article
%T On certain Drinfeld modular forms of higher rank
%J Journal de Théorie des Nombres de Bordeaux
%D 2017
%P 827-843
%V 29
%N 3
%I Société Arithmétique de Bordeaux
%U https://doi.org/10.5802/jtnb.1003
%R 10.5802/jtnb.1003
%G en
%F JTNB_2017__29_3_827_0
Dirk Basson; Florian Breuer. On certain Drinfeld modular forms of higher rank. Journal de Théorie des Nombres de Bordeaux, Volume 29 (2017) no. 3, pp. 827-843. doi : 10.5802/jtnb.1003. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1003/

[1] Dirk Basson On the coefficients of Drinfeld modular forms of higher rank (2014) (Ph. D. Thesis)

[2] Dirk Basson A product formula for the higher rank Drinfeld discriminant function, J. Number Theory, Volume 178 (2017), pp. 190-200 | Article | Zbl: 06728919

[3] Dirk Basson; Florian Breuer; Richard Pink Drinfeld modular forms of arbitrary rank (2017) (manuscript in preparation)

[4] Florian Breuer A note on Gekeler’s h-function, Arch. Math., Volume 107 (2016) no. 4, pp. 305-313 | Article | Zbl: 06642782

[5] Florian Breuer; Hans-Georg Rück Drinfeld modular polynomials in higher rank, J. Number Theory, Volume 129 (2009) no. 1, pp. 59-83 | Article | Zbl: 1254.11058

[6] Vladimir Gershonovich Drinfeld Elliptic modules, Mat. Sb., Volume 94 (1974) no. 4, pp. 594-627 ((Russian). English translation in Math. USSR, Sb. 23(1976), p. 561-592) | Zbl: 0321.14014

[7] Ernst-Ulrich Gekeler Modulare Einheiten für Funktionenkörper, J. Reine Angew. Math., Volume 348 (1984), pp. 94-115 | Zbl: 0523.14021

[8] Ernst-Ulrich Gekeler Satake compactification of Drinfeld modular schemes, Proceedings of the conference on p-adic analysis (Houthalen, 1986) (1986), pp. 71-81 | Zbl: 0657.14012

[9] Ernst-Ulrich Gekeler On the coefficients of Drinfeld modular forms, Invent. Math., Volume 93 (1988) no. 3, pp. 667-700 | Article | Zbl: 0653.14012

[10] Ernst-Ulrich Gekeler Quasi-periodic functions and Drinfeld modular forms, Compos. Math., Volume 69 (1989) no. 3, pp. 277-293 | Zbl: 0703.11066

[11] Ernst-Ulrich Gekeler On Drinfeld modular forms of higher rank, J. Théor. Nombres Bordx., Volume 29 (2017) no. 3

[12] Ernst-Ulrich Gekeler Towers of GL(r)-type of modular curves (2017) (to appear in J. Reine Angew. Math.)

[13] Lothar Gerritzen; Marius van der Put Schottky groups and Mumford curves, Lecture Notes in Mathematics, Volume 817, Springer, 1980, viii+317 pages | Zbl: 0442.14009

[14] David Goss The algebraist’s upper half-plane, Bull. Am. Math. Soc., Volume 2 (1980), pp. 391-415 | Article | Zbl: 0433.14017

[15] David Goss π-adic Eisenstein series for function fields, Compos. Math., Volume 41 (1980), pp. 3-38 | Zbl: 0422.10020

[16] David Goss Some integrals attached to modular forms in the theory of function fields, The arithmetic of function fields (Ohio State University Mathematical Research Institute Publications) Volume 2, Walter de Gruyter, 1992, pp. 227-251 | Zbl: 0805.11047

[17] David Goss Basic structures of function field arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3, Volume 35, Springer, 1996, xiii+422 pages | Zbl: 0874.11004

[18] David Goss, 2016 (private communication)

[19] Yoshinori Hamahata On a product expansion for the Drinfeld discriminant function, J. Ramanujan Math. Soc., Volume 17 (2002) no. 3, pp. 173-185 | Zbl: 1052.11029

[20] Mikhail M. Kapranov Cuspidal divisors on the modular varieties of elliptic modules, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 51 (1987) no. 3, pp. 568-583 ((Russian), English translation in Math. USSR, Izv. 320 (1988), no. 3, p. 533–547) | Zbl: 0664.14025

[21] Rudolph Perkins The Legendre determinant form for Drinfeld modules in arbitrary rank (2014) (https://arxiv.org/abs/1409.6693)

[22] Richard Pink Compactification of Drinfeld modular varieties and Drinfeld modular forms of arbitrary rank, Manuscr. Math., Volume 140 (2013) no. 3-4, pp. 333-361 | Article | Zbl: 1329.11044

Cited by Sources: