We give an introduction to Drinfeld modular forms for principal congruence subgroups of , and then construct a rank analogue of the -function. We show that this function is a cusp form of weight and type 1 which satisfies a product formula. Along the way, we compute the expansion at infinity of weight one Eisenstein series of level .
Nous donnons une introduction aux formes modulaires de Drinfeld pour des sous-groupes de congruence principaux de , et puis nous construisons un analogue en rang de la fonction . Nous montrons que cette fonction est cuspidale de poids et de type 1 et qu’elle satisfait une formule de produit. Dans ce but, nous calculons le développement à l’infini des séries d’Eisenstein de poids 1 et de nivaux .
Revised:
Accepted:
Published online:
Keywords: Drinfeld modular forms, Drinfeld modules
Dirk Basson 1; Florian Breuer 1

@article{JTNB_2017__29_3_827_0, author = {Dirk Basson and Florian Breuer}, title = {On certain {Drinfeld} modular forms of higher rank}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {827--843}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {29}, number = {3}, year = {2017}, doi = {10.5802/jtnb.1003}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1003/} }
TY - JOUR AU - Dirk Basson AU - Florian Breuer TI - On certain Drinfeld modular forms of higher rank JO - Journal de théorie des nombres de Bordeaux PY - 2017 SP - 827 EP - 843 VL - 29 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1003/ DO - 10.5802/jtnb.1003 LA - en ID - JTNB_2017__29_3_827_0 ER -
%0 Journal Article %A Dirk Basson %A Florian Breuer %T On certain Drinfeld modular forms of higher rank %J Journal de théorie des nombres de Bordeaux %D 2017 %P 827-843 %V 29 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1003/ %R 10.5802/jtnb.1003 %G en %F JTNB_2017__29_3_827_0
Dirk Basson; Florian Breuer. On certain Drinfeld modular forms of higher rank. Journal de théorie des nombres de Bordeaux, Volume 29 (2017) no. 3, pp. 827-843. doi : 10.5802/jtnb.1003. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1003/
[1] On the coefficients of Drinfeld modular forms of higher rank, Stellenbosch University, South Africa (2014) (Ph. D. Thesis)
[2] A product formula for the higher rank Drinfeld discriminant function, J. Number Theory, Volume 178 (2017), pp. 190-200 | DOI | Zbl
[3] Drinfeld modular forms of arbitrary rank (2017) (manuscript in preparation)
[4] A note on Gekeler’s -function, Arch. Math., Volume 107 (2016) no. 4, pp. 305-313 | DOI | Zbl
[5] Drinfeld modular polynomials in higher rank, J. Number Theory, Volume 129 (2009) no. 1, pp. 59-83 | DOI | Zbl
[6] Elliptic modules, Mat. Sb., Volume 94 (1974) no. 4, pp. 594-627 (Russian). English translation in Math. USSR, Sb. 23(1976), p. 561-592 | Zbl
[7] Modulare Einheiten für Funktionenkörper, J. Reine Angew. Math., Volume 348 (1984), pp. 94-115 | Zbl
[8] Satake compactification of Drinfeld modular schemes, Proceedings of the conference on -adic analysis (Houthalen, 1986) (1986), pp. 71-81 | Zbl
[9] On the coefficients of Drinfeld modular forms, Invent. Math., Volume 93 (1988) no. 3, pp. 667-700 | DOI | Zbl
[10] Quasi-periodic functions and Drinfeld modular forms, Compos. Math., Volume 69 (1989) no. 3, pp. 277-293 | Zbl
[11] On Drinfeld modular forms of higher rank, J. Théor. Nombres Bordx., Volume 29 (2017) no. 3
[12] Towers of -type of modular curves (2017) (to appear in J. Reine Angew. Math.)
[13] Schottky groups and Mumford curves, Lecture Notes in Mathematics, 817, Springer, 1980, viii+317 pages | Zbl
[14] The algebraist’s upper half-plane, Bull. Am. Math. Soc., Volume 2 (1980), pp. 391-415 | DOI | Zbl
[15] -adic Eisenstein series for function fields, Compos. Math., Volume 41 (1980), pp. 3-38 | Zbl
[16] Some integrals attached to modular forms in the theory of function fields, The arithmetic of function fields (Ohio State University Mathematical Research Institute Publications), Volume 2, Walter de Gruyter, 1992, pp. 227-251 | Zbl
[17] Basic structures of function field arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3, 35, Springer, 1996, xiii+422 pages | Zbl
[18]
, 2016 (private communication)[19] On a product expansion for the Drinfeld discriminant function, J. Ramanujan Math. Soc., Volume 17 (2002) no. 3, pp. 173-185 | Zbl
[20] Cuspidal divisors on the modular varieties of elliptic modules, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 51 (1987) no. 3, pp. 568-583 (Russian), English translation in Math. USSR, Izv. 320 (1988), no. 3, p. 533–547 | Zbl
[21] The Legendre determinant form for Drinfeld modules in arbitrary rank (2014) (https://arxiv.org/abs/1409.6693)
[22] Compactification of Drinfeld modular varieties and Drinfeld modular forms of arbitrary rank, Manuscr. Math., Volume 140 (2013) no. 3-4, pp. 333-361 | DOI | Zbl
Cited by Sources: