We study Drinfeld modular forms for the modular group on the Drinfeld symmetric space , where . Results include the existence of a -th root (up to constants) of the discriminant function , the description of the growth/decay of the standard forms , on the fundamental domain of , and the reduction of these forms on the central part of . The results are exemplified in detail for .
Nous étudions les formes modulaires pour le groupe sur l’espace symétrique de Drinfeld, où . Parmi nos résultats, on a l’existence d’une racine -ième (à une constante près) de la fonction discriminant , la description de la (dé-)croissance des formes élémentaires dans le domaine fondamental de , et la réduction de ces formes sur la partie centrale de . Nous étudions avec plus de détail le cas de .
Revised:
Accepted:
Published online:
Mots-clés : Drinfeld modular forms, Drinfeld discriminant function; Bruhat–Tits building
Ernst-Ulrich Gekeler 1
@article{JTNB_2017__29_3_875_0, author = {Ernst-Ulrich Gekeler}, title = {On {Drinfeld} modular forms of higher rank}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {875--902}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {29}, number = {3}, year = {2017}, doi = {10.5802/jtnb.1005}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1005/} }
TY - JOUR AU - Ernst-Ulrich Gekeler TI - On Drinfeld modular forms of higher rank JO - Journal de théorie des nombres de Bordeaux PY - 2017 SP - 875 EP - 902 VL - 29 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1005/ DO - 10.5802/jtnb.1005 LA - en ID - JTNB_2017__29_3_875_0 ER -
%0 Journal Article %A Ernst-Ulrich Gekeler %T On Drinfeld modular forms of higher rank %J Journal de théorie des nombres de Bordeaux %D 2017 %P 875-902 %V 29 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1005/ %R 10.5802/jtnb.1005 %G en %F JTNB_2017__29_3_875_0
Ernst-Ulrich Gekeler. On Drinfeld modular forms of higher rank. Journal de théorie des nombres de Bordeaux, Volume 29 (2017) no. 3, pp. 875-902. doi : 10.5802/jtnb.1005. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1005/
[1] Groupes réductifs sur un corps local, Publ. Math., Inst. Hautes Étud. Sci., Volume 41 (1972), pp. 5-251 | DOI | Zbl
[2] Survey of Drinfel’d modules, Current trends in arithmetical algebraic geometry (Arcata, Calif.,1985) (Contemporary Mathematics), Volume 67, American Mathematical Society, 1987, pp. 25-91 | Zbl
[3] Rigid analytic geometry and its applications, Progress in Mathematics, 218, Birkhäuser, 2004, xii+296 pages | Zbl
[4] Towers of -type of modular curves (to appear in J. Reine Angew. Math., https://doi.org/10.1515/crelle-2017-0012) | DOI
[5] On the coefficients of Drinfeld modular forms, Invent. Math., Volume 93 (1988) no. 3, pp. 667-700 | DOI | Zbl
[6] Finite modular forms, Finite Fields Appl., Volume 7 (2001) no. 4, pp. 553-572 | DOI | Zbl
[7] Jacobians of Drinfeld modular curves, J. Reine Angew. Math., Volume 476 (1996), pp. 27-93 | Zbl
[8] Schottky groups and Mumford curves, Lecture Notes in Mathematics, 817, Springer, 1980, viii+317 pages | Zbl
[9] The space of -adic norms, Acta Math., Volume 109 (1963), pp. 137-177 | DOI | Zbl
[10] The algebraist’s upper half-plane, Bull. Am. Math. Soc., Volume 2 (1980), pp. 391-415 | DOI | Zbl
[11] Modular forms for , J. Reine Angew. Math., Volume 317 (1980), pp. 16-39 | Zbl
[12] -adic Eisenstein series for function fields, Compos. Math., Volume 41 (1980), pp. 3-38 | Zbl
[13] Basic structures of function field arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3, 35, Springer, 1996, xiii+422 pages | Zbl
[14] Theorem A und Theorem B in der nichtarchimedischen Funktionentheorie, Invent. Math., Volume 2 (1967), pp. 256-273 | DOI | Zbl
[15] Discrete groups, Mumford curves and theta functions, Ann. Fac. Sci. Toulouse, Volume 1 (1992) no. 3, pp. 399-438 | DOI | Zbl
[16] The cohomology of -adic symmetric spaces, Invent. Math., Volume 105 (1991) no. 1, pp. 47-122 | DOI | Zbl
Cited by Sources: