Configurations of Extremal Type II Codes via Harmonic Weight Enumerators
Journal de théorie des nombres de Bordeaux, Volume 31 (2019) no. 3, pp. 679-688.

We prove configuration results for extremal Type II codes, analogous to the configuration results of Ozeki and of Kominers for extremal Type II lattices. Specifically, we show that for

n{8,24,32,48,56,72,96}

every extremal Type II code of length n is generated by its codewords of minimal weight. Where Ozeki and Kominers used spherical harmonics and weighted theta functions, we use discrete harmonic polynomials and harmonic weight enumerators. Along the way we introduce “t1 2-designs” as a discrete analog of Venkov’s spherical designs of the same name.

Nous démontrons des résultats de configuration pour les codes extrêmes de Type II analogues à ceux obtenus par Ozeki et par Kominers pour les réseaux extrêmes de Type II. Plus précisément, nous démontrons que pour

n{8,24,32,48,56,72,96}

tout code extrême de Type II et de longueur n est généré par ses mots de code de poids minimal. Là où Ozeki et Kominers utilisent des harmoniques sphériques et des fonctions thêta pondérées, nous utilisons des polynômes harmoniques discrets et des énumérateurs de poids harmoniques. En cours de route, nous introduisons la notion de t1 2-designs comme un analogue discret des dessins sphériques de Venkov portant le même nom.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/jtnb.1102
Classification: 94B05, 05B05, 11H71, 33C50
Keywords: Type II code, extremal code, $t$-design, discrete harmonic polynomial
Noam D. Elkies 1; Scott Duke Kominers 2

1 Department of Mathematics Harvard University One Oxford Street Cambridge, MA 02138, USA
2 Harvard Business School, Department of Economics, and Center of Mathematical Sciences and Applications Harvard University Rock Center for Entrepreneurship Soldiers Field, Boston, MA 02163, USA
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{JTNB_2019__31_3_679_0,
     author = {Noam D. Elkies and Scott Duke Kominers},
     title = {Configurations of {Extremal} {Type~II} {Codes} via {Harmonic} {Weight} {Enumerators}},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {679--688},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {31},
     number = {3},
     year = {2019},
     doi = {10.5802/jtnb.1102},
     zbl = {1208.94063},
     mrnumber = {4102622},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1102/}
}
TY  - JOUR
AU  - Noam D. Elkies
AU  - Scott Duke Kominers
TI  - Configurations of Extremal Type II Codes via Harmonic Weight Enumerators
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2019
SP  - 679
EP  - 688
VL  - 31
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1102/
DO  - 10.5802/jtnb.1102
LA  - en
ID  - JTNB_2019__31_3_679_0
ER  - 
%0 Journal Article
%A Noam D. Elkies
%A Scott Duke Kominers
%T Configurations of Extremal Type II Codes via Harmonic Weight Enumerators
%J Journal de théorie des nombres de Bordeaux
%D 2019
%P 679-688
%V 31
%N 3
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1102/
%R 10.5802/jtnb.1102
%G en
%F JTNB_2019__31_3_679_0
Noam D. Elkies; Scott Duke Kominers. Configurations of Extremal Type II Codes via Harmonic Weight Enumerators. Journal de théorie des nombres de Bordeaux, Volume 31 (2019) no. 3, pp. 679-688. doi : 10.5802/jtnb.1102. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1102/

[1] Edward F. Assmus; H. F. Mattson New 5-designs, J. Comb. Theory, Volume 6 (1969), pp. 122-151 | DOI | MR | Zbl

[2] Christine Bachoc On harmonic weight enumerators of binary codes, Des. Codes Cryptography, Volume 18 (1999), pp. 11-28 | DOI | MR | Zbl

[3] John H. Conway; Vera Pless On the enumeration of self-dual codes, J. Comb. Theory, Ser. A, Volume 28 (1980), pp. 26-53 | DOI | MR | Zbl

[4] John H. Conway; Vera Pless The binary self-dual codes of length up to 32: A revised enumeration, J. Comb. Theory, Ser. A, Volume 60 (1992), pp. 183-195 | DOI | MR | Zbl

[5] John H. Conway; Neil J. A. Sloane Sphere Packings, Lattices and Groups, Springer, 1999

[6] Philippe Delsarte Hahn polynomials, discrete harmonics, and t-designs, SIAM J. Appl. Math., Volume 34 (1978), pp. 157-166 | DOI | MR | Zbl

[7] Noam D. Elkies; Scott Duke Kominers Weighted Generating Functions for Type II Lattices and Codes, Quadratic and Higher Degree Forms (Developments in Mathematics), Volume 31, Springer, 2013, pp. 63-108 | DOI | MR | Zbl

[8] Masaaki Harada Remark on a 5-design related to a putative extremal doubly-even self-dual [96,48,20] code, Des. Codes Cryptography, Volume 37 (2005), pp. 355-358 | DOI | MR | Zbl

[9] Masaaki Harada Self-orthogonal 3-(56,12,65) designs and extremal doubly-even self-dual codes of length 56, Des. Codes Cryptography, Volume 38 (2006), pp. 5-16 | DOI | MR | Zbl

[10] Masaaki Harada On a 5-design related to a putative extremal doubly even self-dual code of length a multiple of 24, Des. Codes Cryptography, Volume 76 (2015), pp. 373-384 | DOI | MR | Zbl

[11] Masaaki Harada; Masaaki Kitazume; Akihiro Munemasa On a 5-design related to an extremal doubly even self-dual code of length 72, J. Comb. Theory, Ser. A, Volume 107 (2004), pp. 143-146 | DOI | MR | Zbl

[12] Masaaki Harada; Akihiro Munemasa; Vladimir D. Tonchev A characterization of designs related to an extremal doubly-even self-dual code of length 48, Ann. Comb., Volume 9 (2005), pp. 189-198 | DOI | MR | Zbl

[13] Scott Duke Kominers Configurations of Extremal Even Unimodular Lattices, Int. J. Number Theory, Volume 5 (2009), pp. 457-464 | DOI | MR | Zbl

[14] Scott Duke Kominers Weighted Generating Functions and Configuration Results for Type II Lattices and Codes, Undergraduate Thesis, Harvard University, 2009 | Zbl

[15] Colin L. Mallows; Andrew M. Odlyzko; Neil J. A. Sloane Upper bounds for modular forms, lattices and codes, J. Algebra, Volume 36 (1975), pp. 68-76 | DOI | MR | Zbl

[16] Colin L. Mallows; Neil J. A. Sloane An upper bound for self-dual codes, Inform. and Control, Volume 22 (1973), pp. 188-200 | DOI | MR | Zbl

[17] Nathan S. Mendelsohn Intersection numbers of t-designs, Studies in Pure Mathematics: Papers in Combinatorial Theory, Analysis, Geometry, Algebra, and the Theory of Numbers presented to Richard Rado on the Occasion of his Sixty-Fifth Birthday, Academic Press Inc., 1971, pp. 145-150 | Zbl

[18] Michio Ozeki On even unimodular positive definite quadratic lattices of rank 32, Math. Z., Volume 191 (1986), pp. 283-291 | DOI | MR | Zbl

[19] Michio Ozeki On the configurations of even unimodular lattices of rank 48, Arch. Math., Volume 46 (1986), pp. 54-61 | DOI | MR | Zbl

[20] Vera Pless A classification of self-orthogonal codes over GF(2), Discrete Math., Volume 3 (1972), pp. 209-246 | DOI | MR | Zbl

[21] Vera Pless Introduction to the Theory of Error-Correcting Codes, John Wiley & Sons, 1998 | Zbl

[22] Vera Pless; Neil J. A. Sloane On the Classification and Enumeration of Self-Dual Codes, J. Comb. Theory, Ser. A, Volume 18 (1975), pp. 313-335 | DOI | MR | Zbl

[23] Jean-Pierre Serre A Course in Arithmetic, Springer, 1973 | Zbl

[24] Carl L. Siegel Berechnung von Zetafunktionen an ganzzahligen Stellen, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl., Volume 1969 (1969), pp. 87-102 ([pages 82–97 in Gesammelte Abhandlungen IV, Berlin: Springer 1979]) | MR | Zbl

[25] Vladimir D. Tonchev Quasi-symmetric 2-(31,7,7) designs and a revision of Hamada’s conjecture, J. Comb. Theory, Ser. A, Volume 42 (1986), pp. 104-110 | DOI | Zbl

[26] Boris B. Venkov Even unimodular Euclidean lattices in dimension 32, J. Math. Sci., New York, Volume 26 (1984), pp. 1860-1867 | DOI | Zbl

[27] Boris B. Venkov Réseaux et designs sphériques, Réseaux Euclidiens, Designs Sphériques et Formes Modulaires (Monographie de L’Enseignement Mathématique), Volume 37, L’Enseignement Mathématique, 2001, pp. 10-86 (in French) | MR | Zbl

Cited by Sources: