Nous démontrons des résultats de configuration pour les codes extrêmes de Type II analogues à ceux obtenus par Ozeki et par Kominers pour les réseaux extrêmes de Type II. Plus précisément, nous démontrons que pour
tout code extrême de Type II et de longueur est généré par ses mots de code de poids minimal. Là où Ozeki et Kominers utilisent des harmoniques sphériques et des fonctions thêta pondérées, nous utilisons des polynômes harmoniques discrets et des énumérateurs de poids harmoniques. En cours de route, nous introduisons la notion de -designs comme un analogue discret des dessins sphériques de Venkov portant le même nom.
We prove configuration results for extremal Type II codes, analogous to the configuration results of Ozeki and of Kominers for extremal Type II lattices. Specifically, we show that for
every extremal Type II code of length is generated by its codewords of minimal weight. Where Ozeki and Kominers used spherical harmonics and weighted theta functions, we use discrete harmonic polynomials and harmonic weight enumerators. Along the way we introduce “-designs” as a discrete analog of Venkov’s spherical designs of the same name.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1102
Mots-clés : Type II code, extremal code, $t$-design, discrete harmonic polynomial
Noam D. Elkies 1 ; Scott Duke Kominers 2
@article{JTNB_2019__31_3_679_0, author = {Noam D. Elkies and Scott Duke Kominers}, title = {Configurations of {Extremal} {Type~II} {Codes} via {Harmonic} {Weight} {Enumerators}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {679--688}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {31}, number = {3}, year = {2019}, doi = {10.5802/jtnb.1102}, zbl = {1208.94063}, mrnumber = {4102622}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1102/} }
TY - JOUR AU - Noam D. Elkies AU - Scott Duke Kominers TI - Configurations of Extremal Type II Codes via Harmonic Weight Enumerators JO - Journal de théorie des nombres de Bordeaux PY - 2019 SP - 679 EP - 688 VL - 31 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1102/ DO - 10.5802/jtnb.1102 LA - en ID - JTNB_2019__31_3_679_0 ER -
%0 Journal Article %A Noam D. Elkies %A Scott Duke Kominers %T Configurations of Extremal Type II Codes via Harmonic Weight Enumerators %J Journal de théorie des nombres de Bordeaux %D 2019 %P 679-688 %V 31 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1102/ %R 10.5802/jtnb.1102 %G en %F JTNB_2019__31_3_679_0
Noam D. Elkies; Scott Duke Kominers. Configurations of Extremal Type II Codes via Harmonic Weight Enumerators. Journal de théorie des nombres de Bordeaux, Tome 31 (2019) no. 3, pp. 679-688. doi : 10.5802/jtnb.1102. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1102/
[1] New -designs, J. Comb. Theory, Volume 6 (1969), pp. 122-151 | DOI | MR | Zbl
[2] On harmonic weight enumerators of binary codes, Des. Codes Cryptography, Volume 18 (1999), pp. 11-28 | DOI | MR | Zbl
[3] On the enumeration of self-dual codes, J. Comb. Theory, Ser. A, Volume 28 (1980), pp. 26-53 | DOI | MR | Zbl
[4] The binary self-dual codes of length up to : A revised enumeration, J. Comb. Theory, Ser. A, Volume 60 (1992), pp. 183-195 | DOI | MR | Zbl
[5] Sphere Packings, Lattices and Groups, Springer, 1999
[6] Hahn polynomials, discrete harmonics, and -designs, SIAM J. Appl. Math., Volume 34 (1978), pp. 157-166 | DOI | MR | Zbl
[7] Weighted Generating Functions for Type II Lattices and Codes, Quadratic and Higher Degree Forms (Developments in Mathematics), Volume 31, Springer, 2013, pp. 63-108 | DOI | MR | Zbl
[8] Remark on a -design related to a putative extremal doubly-even self-dual code, Des. Codes Cryptography, Volume 37 (2005), pp. 355-358 | DOI | MR | Zbl
[9] Self-orthogonal - designs and extremal doubly-even self-dual codes of length , Des. Codes Cryptography, Volume 38 (2006), pp. 5-16 | DOI | MR | Zbl
[10] On a -design related to a putative extremal doubly even self-dual code of length a multiple of , Des. Codes Cryptography, Volume 76 (2015), pp. 373-384 | DOI | MR | Zbl
[11] On a -design related to an extremal doubly even self-dual code of length , J. Comb. Theory, Ser. A, Volume 107 (2004), pp. 143-146 | DOI | MR | Zbl
[12] A characterization of designs related to an extremal doubly-even self-dual code of length , Ann. Comb., Volume 9 (2005), pp. 189-198 | DOI | MR | Zbl
[13] Configurations of Extremal Even Unimodular Lattices, Int. J. Number Theory, Volume 5 (2009), pp. 457-464 | DOI | MR | Zbl
[14] Weighted Generating Functions and Configuration Results for Type II Lattices and Codes, Undergraduate Thesis, Harvard University, 2009 | Zbl
[15] Upper bounds for modular forms, lattices and codes, J. Algebra, Volume 36 (1975), pp. 68-76 | DOI | MR | Zbl
[16] An upper bound for self-dual codes, Inform. and Control, Volume 22 (1973), pp. 188-200 | DOI | MR | Zbl
[17] Intersection numbers of -designs, Studies in Pure Mathematics: Papers in Combinatorial Theory, Analysis, Geometry, Algebra, and the Theory of Numbers presented to Richard Rado on the Occasion of his Sixty-Fifth Birthday, Academic Press Inc., 1971, pp. 145-150 | Zbl
[18] On even unimodular positive definite quadratic lattices of rank , Math. Z., Volume 191 (1986), pp. 283-291 | DOI | MR | Zbl
[19] On the configurations of even unimodular lattices of rank , Arch. Math., Volume 46 (1986), pp. 54-61 | DOI | MR | Zbl
[20] A classification of self-orthogonal codes over , Discrete Math., Volume 3 (1972), pp. 209-246 | DOI | MR | Zbl
[21] Introduction to the Theory of Error-Correcting Codes, John Wiley & Sons, 1998 | Zbl
[22] On the Classification and Enumeration of Self-Dual Codes, J. Comb. Theory, Ser. A, Volume 18 (1975), pp. 313-335 | DOI | MR | Zbl
[23] A Course in Arithmetic, Springer, 1973 | Zbl
[24] Berechnung von Zetafunktionen an ganzzahligen Stellen, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl., Volume 1969 (1969), pp. 87-102 ([pages 82–97 in Gesammelte Abhandlungen IV, Berlin: Springer 1979]) | MR | Zbl
[25] Quasi-symmetric - designs and a revision of Hamada’s conjecture, J. Comb. Theory, Ser. A, Volume 42 (1986), pp. 104-110 | DOI | Zbl
[26] Even unimodular Euclidean lattices in dimension , J. Math. Sci., New York, Volume 26 (1984), pp. 1860-1867 | DOI | Zbl
[27] Réseaux et designs sphériques, Réseaux Euclidiens, Designs Sphériques et Formes Modulaires (Monographie de L’Enseignement Mathématique), Volume 37, L’Enseignement Mathématique, 2001, pp. 10-86 (in French) | MR | Zbl
Cité par Sources :