Differences in sets of lengths of Krull monoids with finite class group
Journal de Théorie des Nombres de Bordeaux, Tome 17 (2005) no. 1, pp. 323-345.

Soit H un monoïde de Krull dont le groupe de classes est fini. On suppose que chaque classe contient un diviseur premier. On sait que tout ensemble de longueurs est une presque multiprogression arithmétique. Nous étudions les nombres entiers qui apparaissent comme raison de ces progressions. Nous obtenons en particulier une borne supérieure sur la taille de ces raisons. En appliquant ces résultats, nous pouvons montrer que, sauf dans un cas particulier connu, deux p-groupes élémentaires ont le même système d’ensembles de longueurs si et seulement si ils sont isomorphes.

Let H be a Krull monoid with finite class group where every class contains some prime divisor. It is known that every set of lengths is an almost arithmetical multiprogression. We investigate which integers occur as differences of these progressions. In particular, we obtain upper bounds for the size of these differences. Then, we apply these results to show that, apart from one known exception, two elementary p-groups have the same system of sets of lengths if and only if they are isomorphic.

@article{JTNB_2005__17_1_323_0,
     author = {Wolfgang A. Schmid},
     title = {Differences in sets of lengths of Krull monoids with finite class group},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {323--345},
     publisher = {Universit\'e Bordeaux 1},
     volume = {17},
     number = {1},
     year = {2005},
     doi = {10.5802/jtnb.493},
     zbl = {1090.20034},
     mrnumber = {2152227},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.493/}
}
Wolfgang A. Schmid. Differences in sets of lengths of Krull monoids with finite class group. Journal de Théorie des Nombres de Bordeaux, Tome 17 (2005) no. 1, pp. 323-345. doi : 10.5802/jtnb.493. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.493/

[1] D.D. Anderson, (editor), Factorization in integral domains. Lecture Notes in Pure and Applied Mathematics 189, Marcel Dekker Inc., New York, 1997. | MR 1460766 | Zbl 0865.00039

[2] D.F. Anderson, Elasticity of factorizations in integral domains: a survey. In [1], 1–29. | MR 1460767 | Zbl 0773.13003

[3] L. Carlitz, A characterization of algebraic number fields with class number two. Proc. Amer. Math. Soc. 11 (1960), 391–392. | MR 111741 | Zbl 0202.33101

[4] S. Chapman, A. Geroldinger, Krull domains and monoids, their sets of lengths and associated combinatorial problems. In [1], 73–112. | MR 1460769 | Zbl 0897.13001

[5] P. van Emde Boas, A combinatorial problem on finite abelian groups II. Report ZW-1969-007, Math. Centre, Amsterdam (1969), 60p. | MR 255672 | Zbl 0203.32703

[6] W. Gao, A. Geroldinger, Half-factorial domains and half-factorial subsets in abelian groups. Houston J. Math. 24 (1998), 593–611. | MR 1686626 | Zbl 0994.20046

[7] W. Gao, A. Geroldinger, Systems of sets of lengths II. Abh. Math. Sem. Univ. Hamburg 70 (2000), 31–49. | MR 1809532 | Zbl 1036.11054

[8] A. Geroldinger, Über nicht-eindeutige Zerlegungen in irreduzible Elemente. Math. Z. 197 (1988), 505–529. | MR 932683 | Zbl 0618.12002

[9] A. Geroldinger, Systeme von Längenmengen. Abh. Math. Sem. Univ. Hamburg 60 (1990), 115–130. | MR 1087122 | Zbl 0721.11042

[10] A. Geroldinger, On nonunique factorizations into irreducible elements. II. Colloq. Math. Soc. János Bolyai 51, North-Holland, Amsterdam, 1990, 723–757. | MR 1058242 | Zbl 0703.11057

[11] A. Geroldinger, The cross number of finite abelian groups. J. Number Theory 48 (1994), 219–223. | MR 1285540 | Zbl 0814.20033

[12] A. Geroldinger, A structure theorem for sets of lengths. Colloq. Math. 78 (1998), 225–259. | MR 1659136 | Zbl 0926.11082

[13] A. Geroldinger, Y. ould Hamidoune, Zero-sumfree sequences in cyclic groups and some arithmetical application. Journal Théor. Nombres Bordeaux 14 (2002), 221–239. | Numdam | MR 1925999 | Zbl 1018.11011

[14] A. Geroldinger, G. Lettl, Factorization problems in semigroups. Semigroup Forum 40 (1990), 23–38. | MR 1014223 | Zbl 0693.20063

[15] A. Geroldinger, R. Schneider, The cross number of finite abelian groups III. Discrete Math. 150 (1996), 123–130. | MR 1392725 | Zbl 0848.20048

[16] F. Halter-Koch, Elasticity of factorizations in atomic monoids and integral domains. J. Théor. Nombres Bordeaux 7 (1995), 367–385. | Numdam | MR 1378586 | Zbl 0844.11068

[17] F. Halter-Koch, Finitely generated monoids, finitely primary monoids and factorization properties of integral domains. In [1], 31–72. | MR 1460768 | Zbl 0882.13027

[18] F. Halter-Koch, Ideal Systems. Marcel Dekker Inc., New York, 1998. | MR 1828371 | Zbl 0953.13001

[19] U. Krause, A characterization of algebraic number fields with cyclic class group of prime power order. Math. Z. 186 (1984), 143–148. | MR 741299 | Zbl 0522.12006

[20] W. Narkiewicz, Elementary and analytic theory of algebraic numbers, second edition. Springer-Verlag, Berlin, 1990. | MR 1055830 | Zbl 02107000

[21] J.E. Olson, A combinatorial problem on finite abelian groups, I,. J. Number Theory 1 (1969), 8–10. | MR 237641 | Zbl 0169.02003

[22] W.A. Schmid, Arithmetic of block monoids. Math. Slovaca 54 (2004), 503–526. | MR 2114621 | Zbl 02185567

[23] W.A. Schmid, Half-factorial sets in elementary p-groups. Far East J. Math. Sci. (FJMS), to appear. | MR 2255073 | Zbl 05073469

[24] L. Skula, On c-semigroups. Acta Arith. 31 (1976), 247–257. | MR 444817 | Zbl 0303.13014

[25] J. Śliwa, Factorizations of distinct length in algebraic number fields. Acta Arith. 31 (1976), 399–417. | MR 429830 | Zbl 0347.12005

[26] J. Śliwa, Remarks on factorizations in algebraic number fields. Colloq. Math. 46 (1982), 123–130. | MR 672372 | Zbl 0514.12005

[27] A. Zaks, Half factorial domains. Bull. Amer. Math. Soc. 82 (1976), 721–723. | MR 407001 | Zbl 0338.13020