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Differences in sets of lengths of Krull monoids

with finite class group

par Wolfgang A. SCHMID

Résumé. Soit H un monöıde de Krull dont le groupe de classes est
fini. On suppose que chaque classe contient un diviseur premier.
On sait que tout ensemble de longueurs est une presque multi-
progression arithmétique. Nous étudions les nombres entiers qui
apparaissent comme raison de ces progressions. Nous obtenons en
particulier une borne supérieure sur la taille de ces raisons. En
appliquant ces résultats, nous pouvons montrer que, sauf dans un
cas particulier connu, deux p-groupes élémentaires ont le même
système d’ensembles de longueurs si et seulement si ils sont iso-
morphes.

Abstract. Let H be a Krull monoid with finite class group
where every class contains some prime divisor. It is known that
every set of lengths is an almost arithmetical multiprogression.
We investigate which integers occur as differences of these pro-
gressions. In particular, we obtain upper bounds for the size of
these differences. Then, we apply these results to show that, apart
from one known exception, two elementary p-groups have the same
system of sets of lengths if and only if they are isomorphic.

1. Introduction

Let H be a Krull monoid with finite class group G where every class
contains some prime divisor (for example the multiplicative monoid of a
ring of integers in an algebraic number field). H is atomic, thus every non-
unit a ∈ H can be written as a product of irreducible elements. If a ∈ H
and u1, . . . , uk ∈ H are irreducible elements such that a = u1 · . . . · uk is
a factorization of a, then k is called the length of the factorization. The
set L(a) ⊂ N0 of all k such that a has a factorization into irreducibles
of length k is a finite set and is called the set of lengths of a. The set
L(H) = {L(a) | a ∈ H} is called system of sets of lengths of H. It is
well known that the system of sets of lengths of H just depends on the
class group. More precisely, L(a) for some a ∈ H is equal to the set of
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length of some associated element in the block monoid B(G) over the class
group (cf. Section 2 for the definition of a block monoid). Hence sets of
lengths of Krull monoids can be studied in the associated block monoids. A
detailed description of the construction and applications of the associated
block monoids of Krull monoids can be found in the survey articles [17]
and [4] in [1], for the algebraic theory of Krull monoids cf. [18, Chapter 22,
Chapter 23].

In this article we are mainly interested in the set of differences ∆∗(G)
which governs the structure of sets of length (cf. Definition 3.1). More
precisely, every set of lengths is an almost arithmetical multiprogression
(bounded by a constant just depending on G) with difference d ∈ ∆∗(G)
(cf. [8, Satz 1], also cf. the survey articles, [7] and [12] for a generalization).
The set ∆∗(G) was first investigated in [9] and recently in [7] and [13]. In
Theorem 3.1 we give an upper bound for ∆∗(G). For an elementary p-group
we explicitly determine max∆∗(G) and derive a criterion when ∆∗(G) is
an interval (cf. Theorem 4.1).

It is an open question if, respectively to what extent, finite abelian groups
(with Davenport’s constant greater or equal 4) are characterized by their
system of sets of lengths. This is a contribution to the problem due to
W. Narkiewicz of arithmetical characterizations of the class group of a
number field (cf. [20, Theorem 9.2, Notes to Chapter 9]). In [9] it was
answered positively for cyclic groups, for elementary 2-groups and some
other groups. In Section 5 we use Theorem 4.1 to prove that if an elemen-
tary p-group and an elementary q-group have the same system of sets of
lengths, then they are, apart from one already known exception, isomorphic
(cf. Theorem 5.1).

2. Preliminaries

In this section we fix notations and recall terminology and results that
we will need, in particular for monoids, abelian groups and related notions.
The notation will be mostly consistent with the usual one in factorization
theory (cf. [17, 4], also cf. [7]).

For m,n ∈ Z we set [m,n] = {z ∈ Z | m ≤ z ≤ n} and we will call it an
interval. For a set M we denote by |M | ∈ N0 ∪ {∞} its cardinality. For a
real number x let dxe = min{z ∈ Z | x ≤ z} and bxc = max{z ∈ Z | x ≥ z}.

A monoid is a commutative cancellative semigroup with identity element
(1H = 1 ∈ H) and we usually use multiplicative notation. Let H be a
monoid. We denote by H× the group of invertible elements of H. Let
H1,H2 ⊂ H be submonoids. Then we write H = H1 × H2, if for each
a ∈ H, there exist uniquely determined b ∈ H1 and c ∈ H2, such that
a = bc. An element u ∈ H \H× is called irreducible (or an atom), if for all
a, b ∈ H, u = ab implies a ∈ H× or b ∈ H×. By A(H) ⊂ H we denote the
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set of atoms. H is called atomic, if every a ∈ H \ H× has a factorization
into a product of atoms. Let a ∈ H \H× and a = u1 · . . . ·uk a factorization
of a into atoms u1, . . . , uk ∈ A(H). Then k is called the length of the
factorization and

L(a) = {k ∈ N | a has a factorization of length k} ⊂ N

denotes the set of lengths of a. We set L(a) = {0} for all a ∈ H×. The
monoid H is called BF-monoid, if it is atomic and |L(a)| < ∞ for all a ∈ H,
and it is called half-factorial monoid, if it is atomic and |L(a)| = 1 for all
a ∈ H. Let H be an atomic monoid. Then L(H) = {L(a) | a ∈ H} denotes
the system of sets of lengths of H.

Let L ⊂ N0 with L = {l1, l2, l3, . . . } and li < li+1 for each i. Then
∆(L) = {l2 − l1, l3 − l2, l4 − l3, . . . } denotes the set of distances of L. For
an atomic monoid H let ∆(H) =

⋃
L∈L(H) ∆(L) denote the set of distances

of H. Clearly, H is half-factorial if and only if ∆(H) = ∅.
Throughout, let G be an additively written finite abelian group. By r(G)

we denote its rank and by exp(G) its exponent. For n ∈ N let Cn denote a
cyclic group with n elements. If G0 ⊂ G is a subset, then 〈G0〉 ⊂ G denotes
the subgroup generated by G0, where 〈∅〉 = {0}.

The set G0 (respectively its elements) are said to be independent, if 0 /∈
G0, ∅ 6= G0 and given distinct elements e1, . . . , er ∈ G0 and m1, . . . ,mr ∈ Z,
then

∑r
i=1 miei = 0 implies that m1e1 = · · · = mrer = 0. If we say that

{e1, . . . , er} is independent, then we will assume that the elements e1, . . . , er

are distinct.
Let G0 ⊂ G. Then F(G0) denotes the free abelian monoid with basis

G0. An element S =
∏l

i=1 gi ∈ F(G0) is called a sequence in G0. It has a
unique representation S =

∏
g∈G0

gvg(S) with vg(S) ∈ N0 for each g ∈ G0.
We denote the identity element of F(G0), the empty sequence, by 1 and
it will always be obvious from the context, whether we mean the empty
sequence or the integer.

If T | S, then T−1S denotes the codivisor of T , i.e. the (unique) sequence
such that T (T−1S) = S. We denote by |S| = l ∈ N0 the length of S, by
k(S) =

∑l
i=1

1
ord(gi)

the cross number of S and by σ(S) =
∑l

i=1 gi ∈ G the
sum of S. The support of S is the set of all g ∈ G0 occurring in S, i.e.
supp(S) = {gi | i ∈ [1, l]} = {g ∈ G0 | vg(S) > 0} ⊂ G0. The length and
cross number of the empty sequence are 0 and the support is the empty
set.

The sequence S is called a zero-sum sequence (a block), if σ(S) = 0, and
S is called zero-sumfree, if σ(T ) 6= 0 for all 1 6= T | S. A zero-sum sequence
1 6= S is called minimal zero-sum sequence, if for each proper divisor T | S
(i.e. with T 6= S), T is zero-sumfree. The empty sequence is a zero-sum
sequence and zero-sumfree.
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The set B(G0) consisting of all zero-sum sequences in G0 is a submonoid
of F(G0), called the block monoid over G0. B(G0) is a BF-monoid and
its atoms are just the minimal zero-sum sequences. If G1 ⊂ G0, then
B(G1) ⊂ B(G0) is a submonoid. For ease of notation, we denote by A(G0)
the set of atoms, by L(G0) the system of sets of lengths and by ∆(G0) the
set of distances of B(G0).

A subset G0 ⊂ G is called half-factorial, if B(G0) is a half-factorial
monoid, and G0 is called minimal non-half-factorial, if G0 is not half-
factorial and each G1 ( G0 is half-factorial.

G0 ⊂ G is half-factorial if and only if k(A) = 1 for each A ∈ A(G0)
(cf. [24, 25, 27] and [4, Proposition 5.4] for a proof in present terminology).
Note that G (and thus all subsets of G) is half-factorial if and only if |G| ≤ 2
(cf. [3, 27, 24]). For further results and applications of half-factorial sets
we refer to [6] and the references given there.

Let G0 ⊂ G. Then D(G0) = max{|A| | A ∈ A(G0)} is called Daven-
port’s constant of G0 and K(G0) = max{k(A) | A ∈ A(G0)} is called the
cross number of G0. If G ∼= Cn1 ⊕ · · · ⊕ Cnr is a p-group, then D(G) =
1 +

∑r
i=1(ni − 1) and K(G) = 1

exp(G) +
∑r

i=1
ni−1

ni
(cf. [5, 21] and [19, 11]).

3. An Upper Bound for ∆∗(G)

Until the end of this section let G denote a finite abelian group with
|G| ≥ 3.

Definition 3.1. Let G be a finite abelian group.
(1) ∆∗(G) = {min∆(G0) | ∅ 6= G0 ⊂ G and G0 non-half-factorial}
(2) For d ∈ N, we say d ∈ ∆1(G), if for every k ∈ N there is some

L ∈ L(G) with L = L′ ∪ L∗ ∪ L′′ such that

max L′ < minL∗ ≤ max L∗ < minL′′ and L∗ = {y + id | i ∈ [0, l]}
with some y ∈ N and l ≥ k.

There is a close relation among ∆∗(G) and ∆1(G) (cf. Lemma 3.1).
Note that the definition of ∆∗(G) involves the group G itself, whereas the
definition of ∆1(G) just involves the system of sets of lengths L(G). This
suggests that ∆∗(G) can be used to gather information on G from L(G)
and in Section 5, as mentioned in the Introduction, we make use of this
fact to distinguish elementary p-groups by their system of sets of lengths.

First we cite several fundamental results, that will be used in the proofs
of our results.

Lemma 3.1. [10, Proposition 2] ∆∗(G) ⊂ ∆1(G) and if d ∈ ∆1(G), then
there exists some d′ ∈ ∆∗(G) such that d | d′. In particular, max ∆∗(G) =
max ∆1(G).
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Lemma 3.2. [8, Proposition 3, Proposition 4] Let G0 ⊂ G be a non-half-
factorial set. Then min∆(G0) = gcd(∆(G0)) and max ∆(G0) ≤ D(G0)−2.

The following Lemma summarizes several results that will we useful.
Statements 1.,2. and 3. are immediate consequence of Lemma 3.2 and the
definitions, the other statements are proved in [7, Lemma 5.4].

Lemma 3.3. Let G0 ⊂ G′
0 ⊂ G be non-half-factorial sets.

(1) min∆(G′
0)|min∆(G0).

(2) Let G′ be a finite abelian group such that G ⊂ G′ is a subgroup. Then
∆∗(G) ⊂ ∆∗(G′).

(3) Let L ∈ L(G0) and x, y ∈ L. Then min∆(G0) | (x− y).
(4) min∆(G0) | gcd({exp(G)(k(A)− 1) | A ∈ A(G0)}).
(5) If there exists some A ∈ A(G0) with k(A) < 1, then min∆(G0) ≤

exp(G)− 2.

Next we give results on min∆(G0) for special types of subsets G0 ⊂ G
and results on ∆∗(G), which were obtained in [7, Proposition 5.2].

Lemma 3.4. [7, Proposition 5.2] Let G1 = {e1, . . . , er} ⊂ G independent
with ord(e1) = · · · = ord(er) = n.

(1) Let g = −
∑r

i=1 ei and G0 = {g}∪G1. Then either n = r +1 and G0

is half-factorial or ∆(G0) = {|n− r − 1|}.
(2) Let r ≥ 2 and g′ =

∑r
i=1 ei and G0 = {g′} ∪ G1. Then ∆(G0) =

{r − 1}.
(3) [1, r(G)− 1] ⊂ ∆∗(G) and for all m ∈ N with m ≥ 3 and m| exp(G)

m− 2 ∈ ∆∗(G).

This lemma gives immediately that

max ∆∗(G) ≥ max{exp(G)− 2, r(G)− 1}.
There are known several types of groups for which equality holds. For
p-groups with large rank this was proved in [7, Theorem 1.5] and for cyclic
groups even a more general result on ∆∗(G) is known (cf. [13, Theorem
4.4]). In Theorem 4.1 we will prove that equality holds for elementary
p-groups. Moreover, there is known no group for which equality does not
hold.

In Theorem 3.1 we obtain an upper bound, involving the cross number
K(G), for the elements of ∆∗(G). Using this result we will treat several
special cases (cf. Corollary 3.2 and Corollary 3.3).

Lemma 3.5. Let G0 ⊂ G be a non-half-factorial set and g ∈ G0 such
that G0 \ {g} is half-factorial. Suppose there exists some W ∈ A(G0) with
k(W ) = 1, g ∈ supp(W ) and

gcd({vg(W ), ord(g)}) = 1.
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Then k(A(G0)) ⊂ N and

min∆(G0) | gcd({k(A)− 1 | A ∈ A(G0)}).

Proof. Let A ∈ A(G0). We need to prove, that k(A) ∈ N and that

min∆(G0) | (k(A)− 1).

If k(A) = 1, this is obvious, hence we assume k(A) 6= 1. G0 \ {g} is half-
factorial, thus g ∈ supp(A) and vg(A) ∈ [1, ord(g)− 1]. Since

gcd({vg(W ), ord(g)}) = 1,

there exists some x ∈ [1, ord(g)] such that

xvg(W ) ≡ −vg(A) mod ord(g).

Thus xvg(W ) + vg(A) = y ord(g) for some y ∈ N. We consider the block
C = AW x. We get C = gyord(g)B with B ∈ B(G0 \ {g}). Since G0 \ {g} is
half-factorial, we have k(B) ∈ N and L(B) = {k(B)}. For k(A) we get

k(C) = k(A) + x = y + k(B)

and consequently k(A) = k(B) + y − x ∈ N, which proves the first part
of the lemma. We know that each factorization of B has length k(B) =
k(A)+x−y, hence there exists a factorization of C with length y +k(B) =
k(A)+x. Since C = AW x is a factorization of length 1+x, we get, applying
Lemma 3.3.3, that min∆(G0) | (k(A)− 1). �

Corollary 3.1. Let G0 ⊂ G be a minimal non-half-factorial set. Suppose
that G0 has a proper subset ∅ 6= G1 ( G0 which is not a minimal generating
set (with respect to inclusion) for 〈G1〉. Then k(A(G0)) ⊂ N and

min∆(G0)| gcd({k(A)− 1 | A ∈ A(G0)}).

Proof. Let G′
1 ( G1 such that 〈G′

1〉 = 〈G1〉 and g ∈ G1 \ G′
1. Since

G0 is minimal non-half-factorial, we have G0 \ {g} is half-factorial. Since
−g ∈ 〈G′

1〉, there is some S ∈ F(G′
1) with σ(S) = −g, and consequently

there exists some atom W ∈ A(G1) with vg(W ) = 1. Since G0 is minimal
non-half-factorial and supp(W ) ⊂ G1 ( G0, it follows that k(W ) = 1. Thus
Lemma 3.5 implies the assertion. �

Now we are ready to prove the upper bound for ∆∗(G). In the proof
it will be an important step to restrict our considerations to sets G0 with
convenient properties. To do so we will apply Lemma 3.3 and a result
obtained in [22] that makes use of the notion of transfer homomorphisms
(cf. [17, Section 5]).
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Theorem 3.1. Let G be a finite abelian group. Then

max ∆∗(G) ≤ max
{

exp(G)− 2, 2K(G)− 1− 2
exp(G)

}
.

Proof. Let G0 ⊂ G be a non-half-factorial set. We need to prove that

min∆(G0) ≤ max
{

exp(G)− 2, 2K(G)− 1− 2
exp(G)

}
.

By Lemma 3.3.1 we may assume that G0 is minimal non-half-factorial.
Moreover, we may assume by [22, Theorem 3.17] that for each g ∈ G0

g ∈ 〈G0 \ {g}〉.

If there exists some atom A ∈ A(G0) with k(A) < 1, then by Lemma 3.3.5
min∆(G0) ≤ exp(G)− 2, which gives the statement of the theorem.

Suppose k(A) ≥ 1 for each A ∈ A(G0). Let g ∈ G0 and G1 = G0 \ {g}.
Since −g ∈ 〈G1〉, there exists an atom W ∈ A(G0) with vg(W ) = 1. If
k(W ) = 1, we apply Lemma 3.5 and obtain

min∆(G0) ≤ gcd({k(A)− 1 | A ∈ A(G0)})
≤ max{k(A)− 1 | A ∈ A(G0)}

≤ K(G)− 1 ≤ 2K(G)− 1− 2
exp(G)

.

Suppose k(W ) > 1. For every j ∈ [1, ord(g)] we consider the block W j ,
and obviously we have j ∈ L(W j). For every j ∈ [1, ord(g)] let Wj ∈ B(G0)
and Bj ∈ B(G1), such that W j = WjBj and k(Wj) is minimal among all
blocks Vj ∈ B(G0) with Vj | W j and vg(Vj) = j. Since G1 is half-factorial
we obtain that L(Bj) = {k(Bj)} for every j ∈ [2, ord(g)]. For j = 1 we
have W1 = W , B1 = 1 and

{1} = L(W1) = L(W1) + L(B1).

For j = ord(g) we have Word(g) = gord(g) and

ord(g)k(W ) = 1 + k(Bord(g)) ∈ L(Word(g)) + L(Bord(g)) ⊂ L(W ord(g)).

In particular, since ord(g) 6= ord(g)k(W ), we have |L(W ord(g))| > 1.
We define

k = min{j ∈ [1, ord(g)] | L(Wj) + L(Bj) 6= {j}}.

Since ord(g)k(W ) ∈ L(Word(g)) + L(Bord(g)) and L(W1) + L(B1) = {1} we
obtain k ∈ [2, ord(g)].

We have k ∈ L(W k) and there exists some k′ ∈ L(Wk) + L(Bk) ⊂
L(W k) such that k′ 6= k. Since W k is not an atom we have k′ > 1.
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By Lemma 3.3.3 it suffices to prove that

|k − k′| ≤ max
{

exp(G)− 2, 2K(G)− 1− 2
exp(G)

}
.

If k′ < k, then

k − k′ ≤ ord(g)− k′ ≤ ord(g)− 2 ≤ exp(G)− 2.

Suppose k < k′. We estimate max L(W k). Since k(A) ≥ 1 for each
A ∈ A(G0), we have max L(W k) ≤ k(W k).

We will estimate k(W k−1), which leads to an estimate for k(W k). By
definition of k we have

L(Wk−1) + L(Bk−1) = {k − 1}

and hence L(Wk−1) = {l} with some l ∈ [1, k − 1]. We have L(Bk−1) =
{k(Bk−1)}, hence k(Bk−1) + l = k − 1 and

k(Bk−1) = k − 1− l ≤ k − 2.

Let W ′
k−1 ∈ F(G1) such that Wk−1 = gk−1W ′

k−1. Since k(Wk−1)
is minimal, we know that W ′

k−1 is zero-sumfree. Thus k(W ′
k−1) ≤

K(G)− 1
exp(G) and k(Wk−1) ≤ k−1

ord(g) + K(G)− 1
exp(G) ≤ K(G) + 1− 2

exp(G) .
Combining these estimates we obtain

k(W k) = k(W ) + k(Wk−1) + k(Bk−1)

≤ K(G) +
(

K(G) + 1− 2
exp(G)

)
+ (k − 2)

= 2K(G) + k − 1− 2
exp(G)

.

Consequently, we have

k′ − k ≤ k(W k)− k ≤ 2K(G)− 1− 2
exp(G)

.

�

For p-groups the size of K(G) is known and using this we can bound
max ∆∗(G) by an expression just involving r(G) and exp(G). If exp(G) = 2,
then this upper bound yields max ∆∗(G) = r−1, which was initially proved
in [9, Proposition 1].

Corollary 3.2. If G is a p-group, then

max ∆∗(G) ≤ max
{

exp(G)− 2, 2r(G)
exp(G)− 1

exp(G)
− 1

}
.

In particular, if exp(G) = 2, then max ∆∗(G) = r − 1.
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Proof. Suppose G is a p-group. Let r(G) = r and k1, . . . , kr ∈ N such that
G ∼=

⊕r
i=1 Cpki . By [11, Theorem], as mentioned in Section 2, we have

K(G) = 1
exp(G) +

∑r
i=1

pki−1
pki

≤ 1
exp(G) + r exp(G)−1

exp(G) . Therefore

2K(G)− 1− 2
exp(G)

≤ 2r
exp(G)− 1

exp(G)
− 1,

and applying Theorem 3.1 the first statement follows.
Suppose exp(G) = 2. Then 2r(G) exp(G)−1

exp(G) − 1 = r(G) − 1. By Lemma
3.4.3 we have r(G)− 1 ≤ max ∆∗(G) and equality follows. �

For arbitrary finite abelian groups the size of K(G) is not known. How-
ever, there is known an upper bound for K(G). Using this result, we get an
upper bound for max ∆∗(G) just involving r(G) and exp(G) as-well. (By
log(·) we mean the natural logarithm.)

Corollary 3.3.

max ∆∗(G) ≤ max{exp(G)− 2, 2r(G) log(exp(G))}.

In particular, if exp(G)−2
2 log(exp(G)) ≥ r(G), then

max ∆∗(G) = exp(G)− 2.

Proof. Let n = exp(G) and r = r(G). By [15, Theorem 2] we have K(G) ≤
1
2 + log(|G|). Therefore

2K(G)− 1− 2
n
≤ 2

(
1
2

+ log(|G|)
)
− 1− 2

n

< 2 log(|G|) ≤ 2 log(nr) = 2r log(n),

which proves, applying Theorem 3.1, the first statement.
Now suppose n−2

2 log(n) ≥ r. We get

max{n− 2, 2r log(n)} = n− 2 and consequently max ∆∗(G) ≤ n− 2.

By Lemma 3.4.3 we have n− 2 ≤ max ∆∗(G) and equality follows. �

4. ∆∗(G) for Elementary p-groups

In this section we investigate ∆∗(G) for elementary p-groups. We pro-
ceed similarly to the previous section, but in elementary p-groups minimal
generating sets are independent and thus certain sets are so-called simple
sets. Using results on the set of atoms of block monoids over simple sets we
will investigate min∆(G0) for simple subsets of finite abelian groups (cf.
Proposition 4.1). Having this at hand we will determine max∆∗(G) (and
to some extent the structure of ∆∗(G)) in case G is an elementary p-group.

We recall a definition of simple sets and some related notations. A
subset G0 ⊂ G \ {0} is simple if there exists some g ∈ G0 such that
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G1 = G0 \ {g} = {e1, . . . , er} is independent with ord(ei) = ni for each
i ∈ [1, r] and g = −

∑r
i=1 biei with bi ∈ [1, ni − 1] for each i ∈ [1, r]. For

j ∈ N let Wj(G1, g) = Wj ∈ B(G0) denote the unique block with vg(Wj) = j
and vei(Wj) ∈ [0, ni − 1] for each i ∈ [1, r] (clearly, vei(Wj) ≡ jbi mod ni).
Moreover, let i(G1, g) = {j ∈ N | Wj ∈ A(G0)}.

Note that the sets considered in Lemma 3.4 are simple sets. In the
following result we summarize some results on simple sets.

Lemma 4.1. [22, Theorem 4.7, Lemma 4.12] Let G be an abelian group,
r ∈ N, G1 = {e1, . . . , er} an independent set with ord(ei) = ni for each
i ∈ [1, r], g = −

∑r
i=1 biei with bi ∈ [1, ni − 1] for each i ∈ [1, r] and

G0 = G1 ∪ {g}. Further let j ∈ N.
(1) If W ∈ B(G0) with vg(W ) = j, then Wj | W .
(2) A(G0) = {eni

i | i ∈ [1, r]} ∪ {Wj | j ∈ i(G1, g)}.
(3) i(G1, g) = {j ∈ [1, ord(g)] | Wk - Wj for each k ∈ [1, j − 1]}. In

particular, {1, ord(g)} ⊂ i(G1, g) ⊂ [1, ord(g)].
(4) If Wj /∈ A(G0), then there exists some k ∈ [1, j − 1] such that Wj =

WkWj−k.
(5) min(i(G1, g) \ {1}) = min{

⌈
ni
bi

⌉
| i ∈ [1, r]}.

(6) i(G1, g) = {1, ord(g)} if and only if ord(g) | ni and bi = ni
ord(g) for

each i ∈ [1, r].
(7) If i(G1, g) 6= {1, ord(g)}, then min(i(G1, g) \ {1}) ≤

⌈
ord(g)

2

⌉
.

Now we are ready to investigate min ∆(G0) for simple sets.

Proposition 4.1. Let G0 = {g, e1, . . . , er} ⊂ G be a simple and non-
half-factorial set with r ∈ N, {e1, . . . , er} independent, ord(g) = n and
ord(ei) = ni for each i ∈ [1, r]. Then either

min∆(G0) ≤ max{r − 1,
⌊n

2

⌋
− 1}

or

n | ni for every i ∈ [1, r], g = −
r∑

i=1

ni

n
ei and min∆(G0) = |n− r − 1|.

Proof. We set G1 = {e1, . . . , er} and g = −
∑r

i=1 biei with bi ∈ [1, ni − 1]
for every i ∈ [1, r].

We use all notations introduced for simple sets and set m =
min(i(G1, g) \ {1}) hence m ∈ [2, n]

Suppose that m = n. Then, by definition of i(G1, g), we have

A(G0) = {en1
1 , . . . , enr

r ,Wn = gn,W1 = g
r∏

i=1

ebi
i }
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and Lemma 4.1.6 implies that n | ni and bi = ni
n for every i ∈ [1, r]. Thus

Wn
1 = Wn

∏r
i=1 eni

i is the only non-cancellative relation among the atoms
of G0. Since G0 is non-half-factorial, we get n 6= r − 1 and ∆(G0) =
{|n− r − 1|}.

Suppose that m ∈ [2, n− 1].
If k(W1) = 1, then Lemma 3.5 implies min∆(G0) | gcd({k(A) − 1 |

A ∈ A(G0)}). Since G0 is non-half-factorial, there exists an atom, say
A′ ∈ A(G0), such that k(A′) 6= 1. We obtain

k(A′) =
vg(A′)

n
+

r∑
i=1

vei(A
′)

ni
< 1 + r

and consequently min∆(G0) < r hence min∆(G0) ≤ r − 1.
Suppose k(W1) 6= 1. For every j ∈ [1, n] let Bj = W−1

j W j
1 ∈ B(G1).

Since G1 is half-factorial, it follows that L(Bj) = {k(Bj)} for every
j ∈ [1, n]. For j = 1 we have

{1} = L(W1) = L(W1) + {0} = L(W1) + L(B1).

For j = n we have Wn
1 = WnBn, Wn = gn ∈ A(G0) and

n 6= nk(W1) = 1 + k(Bn) ∈ L(Wn) + L(Bn).

We define
k = min{j ∈ [1, n] | L(Wj) + L(Bj) 6= {j}}.

Clearly, we obtain that k ∈ [2, n] and

{j} ∪ (L(Wj) + L(Bj)) ⊂ L(W j
1 )

for every j ∈ [1, n].
Assertion: Wk ∈ A(G0).
Proof of the Assertion: Assume to the contrary that Wk /∈ A(G0). We
assert that

L(Wk) + L(Bk) ⊂
⋃

j∈[1,k−1]

L(Wj) + L(Wk−j) + L(Bj) + L(Bk−j).

Suppose that this holds true. If j ∈ [1, k−1], then L(Wj)+L(Bj) = {j} and
L(Wk−j)+L(Bk−j) = {k− j}. Thus L(Wk)+L(Bk) ⊂ {k}, a contradiction.

To verify the inclusion, let l ∈ L(Wk) and U1 · . . . · Ul a factorization of
Wk with length l. Then there is some j ∈ [1, k− 1] such that U1 = Wj . By
Lemma 4.1.4 we have W−1

j Wk = Wk−j hence U2 · . . . · Ul is a factorization

of Wk−j with length l−1. Since (WjBj)−1WkBk = W k−j
1 = Wk−jBk−j , we

obtain that WkBk = (WjWk−j)BjBk−j hence Bk = BjBk−j and k(Bk) =
k(Bj) + k(Bk−j). Since L(Bν) = {k(Bν)} for every ν ∈ [1, k] it follows that

l + L(Bk) ⊂ L(Wj) + L(Wk−j) + L(Bj) + L(Bk−j)

hence the inclusion is verified.
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Since Wk ∈ A(G0) we infer that m ≤ k and

{k} 6= L(Wk) + L(Bk) = {1}+ {k(Bk)} = {1 + k(Bk)}.
Note that since W k is not an atom, Bk 6= 1 and hence k(Bk) 6= 0.

Case 1: 1 + k(Bk) > k. Let j ∈ [2, n] By definition we have

W−1
j W1Wj−1 ∈ B(G1),

and since G1 is independent, it follows that vei(W
−1
j W1Wj−1) ∈ niN0 for

every i ∈ [1, r]. Since vei(Wl) ∈ [0, ni − 1] for every l ∈ N, it follows that
vei(W

−1
j W1Wj−1) ∈ {0, n1} for every i ∈ [1, r]. Thus

W−1
j W1Wj−1 =

∏
i∈Ij

eni
i

for some Ij ⊂ [1, r]. Since W1 = W−1
j−1B

−1
j−1WjBj , we obtain that B−1

j−1Bj =∏
i∈Ij

eni
i hence k(Bj)− k(Bj−1) = |Ij | ∈ [0, r].

If j ∈ [1, k − 1], then {k(Bj)} + L(Wj) = L(Bj) + L(Wj) = {j} hence
k(Bj) ≤ j − 1. Therefore we obtain that

min∆(G0) ≤ 1+k(Bk)−k ≤ 1+(k(Bk−1)+r)−k ≤ 1+(k−2+r)−k = r−1.

Case 2: 1 + k(Bk) < k. If k = m, Lemma 4.1.7 implies that

min∆(G0) ≤ k−(1+k(Bk)) = m−(1+k(Bk)) ≤ m−2 ≤
⌈n

2

⌉
−2 ≤

⌊n

2

⌋
−1.

Suppose that m < k. Then we have

Wm
1 = WmBm

and {1} + {k(Bm)} = L(Wm) + L(Bm) = {m} hence k(Bm) = m − 1. We
set f =

⌊
k
m

⌋
and obtain that

WkBk = W k
1 = W k−mf

1 Wmf
1 = W k−mf

1 W f
mBf

m.

Lemma 4.1.1 implies that Wk | W k−mf
1 W f

m but W k−mf
1 W f

m /∈ A(G0) hence
Wk 6= W k−mf

1 W f
m. Thus Bf

m | Bk but Bf
m 6= Bk hence

k(Bk) > k(Bf
m) = fk(Bm) = f(m− 1).

Therefore we obtain that
min∆(G0) ≤ k − (1 + k(Bk)) ≤ k − (1 + fm− f + 1) ≤ m + f − 3

≤ m +
k

m
− 3 ≤ n

m
+ m− 3.

Recall that m ∈ [2,
⌈

n
2

⌉
] and let f : R>0 → R be defined by f(x) = n

x +x−3.
Since f ′′(x) > 0 for every x ∈ R>0 (or by a direct argument cf. [23, Lemma
4.3]), we obtain that

max{f(x) | x ∈ [2,
⌈n

2

⌉
]} = max{f(2), f(

⌈n

2

⌉
)}
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hence min∆(G0) ≤
⌊

n
2

⌋
− 1. �

Theorem 4.1. Let G be an elementary p-group with exp(G) = p and
r(G) = r. Then

[1, r − 1] ∪ [max{1, p− r − 1}, p− 2] ⊂ ∆∗(G) ⊂

[1, r − 1] ∪ [max{1, p− r − 1}, p− 2] ∪ [1,
p− 3

2
].

In particular,
(1) max∆∗(G) = max{p− 2, r − 1}.
(2) ∆∗(G) is an interval if and only if p ≤ 2r + 1.

Proof. By Lemma 3.4 we know that

[1, r − 1] ∪ [max{1, p− r − 1}, p− 2] ⊂ ∆∗(G).

Let G′
0 ⊂ G be a non-half-factorial subset and d′ = min∆(G′

0). We have
to prove that d′ ∈ [1, r−1]∪[1, p−3

2 ]∪[max{1, p−r−1}, p−2]. If p = 2, then
min∆(G′

0) ≤ D(G′
0)− 2 ≤ r − 1 by Lemma 3.2. Let p ≥ 3 and G0 ⊂ G′

0 a
minimal non-half-factorial subset and d = min∆(G0). Then Lemma 3.3.1
implies that d′ | d. If d ∈ [max{1, p − 1 − r}, p − 2], then either d = d′ or
d′ ≤

⌊
d
2

⌋
≤ p−3

2 . Suppose that d /∈ [max{1, p − 1 − r}, p − 2]. Let g ∈ G0

and G1 = G0 \ {g}.
If G1 is not a minimal generating set for 〈G1〉, then Corollary 3.1 implies

that d ≤ K(G)− 1. By [11, Theorem], as mentioned in Section 2, we have
K(G) ≤ r and thus d′ ∈ [1, r − 1].

Suppose that G1 is a minimal generating set for 〈G1〉. G is an elementary
p-group, consequently G1 is independent. Since G0 is minimal non-half-
factorial, G0 is not independent and it follows that G0 is simple (also cf.
[22, Lemma 4.4]).

Thus Proposition 4.1 implies that d ≤ max{r − 1, p−3
2 } hence d′ ∈

[1, r − 1] ∪ [1, p−3
2 ].

It remains to prove the additional statements: 1. is obvious.
2. If p ≤ 2r + 1, then

[1, r − 1] ∪ [max{1, p− r − 1}, p− 2] = [1,max{p− 2, r − 1}]
and consequently ∆∗(G) = [1,max{p − 2, r − 1}]. If p > 2r + 1, then
1 ∈ ∆∗(G), p− 2 ∈ ∆∗(G) but p− r − 2 /∈ ∆∗(G). �

5. Characterizing Elementary p-groups by L(G)

As mentioned in the Introduction, it is an open question to what extent
a finite abelian group is characterized by its system of sets of lengths. In
Section 2 we mentioned that if |G| ≤ 2, then the block monoid B(G) is half-
factorial, hence L(C1) = L(C2) (cf. [24, Proposition 3.2]). In [9, Lemma 9,
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Lemma 10] it was proved, that L(C3) = L(C2
2 ) and no group not isomorphic

to C3 or C2
2 has the same system of sets of lengths as these groups.

Furthermore, it is known (cf. [9, Satz 4]) that for n ∈ N with n ≥ 4 the
following holds: If

L(G) = L(Cn), then G ∼= Cn

and if

L(G) = L(Cn−1
2 ), then G ∼= Cn−1

2 .

In this section we will prove the following result.

Theorem 5.1. Let p and q be primes, G be an elementary p-group and G′

be an elementary q-group with D(G) 6= 3. If L(G) = L(G′), then G ∼= G′.

Since we just investigate elementary p-groups, we will have, from Propo-
sition 5.1 until the end of the paper, as general assumption that G is an
elementary p-group and some additional notation introduced there.

In Theorem 5.1 but even more in its proof Davenport’s constant is of
importance. Recall that if G is an elementary p-group with r(G) = r, then
D(G) = 1 + (p − 1)r. Consequently, C3 and C2

2 are the only elementary
p-groups and in fact the only abelian groups with Davenport’s constant
equal to 3. Thus the theorem gives, that apart from C2

2 and C3 any ele-
mentary p-group is characterized by its system of sets of lengths among all
other groups that are elementary q-groups for some prime q.

To prove Theorem 5.1 we make use of the notion of elasticity one of the
most investigated invariants in the theory of non-unique factorization (cf.
the survey article [2] in [1]). For a non-empty, finite subset L ⊂ N

ρ(L) =
max L

minL
∈ Q≥1

is called the elasticity of L, and one sets ρ({0}) = 1. Let H be a BF-monoid
and a ∈ H. Then ρ(a) = ρ(L(a)) is called the elasticity of a and

ρ(H) = sup{ρ(a) | a ∈ H} ∈ R≥1 ∪ {∞}
the elasticity of H.

By definition, a BF-monoid is half-factorial if and only if ρ(H) = 1. In
the following lemma we summarize some facts on the elasticity, which we
need in the proofs of Proposition 5.2 and 5.3. As usual, we write ρ(G0)
instead of ρ(B(G0)).

Lemma 5.1. [16, 14] Let H be a BF-monoid.
(1) If H =

∏r
i=1 Hi, then ρ(H) = sup{ρ(Hi) | i ∈ [1, r]}.

(2) Let H = B(G0) for a non-empty subset of an abelian group G. Then
ρ(G0) ≤ 1

2D(G0). If G0 = {−g | g ∈ G0}, then ρ(G0) = 1
2D(G0).
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Another concept we will use are decomposable and indecomposable sets.
A non-empty subset G0 ⊂ G is decomposable, if G0 has a partition G0 =
G1∪̇G2 with non-empty sets G1, G2, such that B(G0) = B(G1) × B(G2)
(equivalently 〈G0〉 = 〈G1〉 ⊕ 〈G2〉). Otherwise G0 is indecomposable. In
the proof of Proposition 5.2 we will make use of the fact that every non-
empty set G0 ⊂ G has a (up to order) uniquely determined decompositions
into indecomposable sets (cf. [22, Section 3]). Note that minimal non-half-
factorial sets are indecomposable.

An important tool to characterize groups is that D(G) is determined by
L(G).

Lemma 5.2. [9, Lemma 7] Let G be a finite abelian group with |G| ≥ 2.
Then

D(G) = max{max L | L ∈ L(G) with 2 ∈ L}.
From here until the end of this paper, although not explicitly stated in

the exposition, all groups G will be elementary p-groups with r(G) = r and
{e1, . . . , er} ⊂ G an independent set.

The results established in Section 4 give information on ∆1(G).

Proposition 5.1.

max ∆1(G) = max{p− 2, r − 1}
and ∆1(G) is an interval if and only if p ≤ 2r + 1.

Proof. By Lemma 3.1 and Theorem 4.1 the statement on max ∆1(G) is
obvious. Clearly, in case ∆∗(G) is an interval, we get by Lemma 3.1 ∆1(G)
is an interval as-well. Conversely, suppose that ∆∗(G) is not an interval.
Then Theorem 4.1 implies that p > 2r + 1 and p − r − 2 /∈ ∆∗(G). Since
p − r − 2 > 1

2 max ∆∗(G), it follows that p − r − 2 - d for any d ∈ ∆∗(G).
Thus p− r − 2 /∈ ∆1(G) hence ∆1(G) is not an interval. �

Another result we will need to prove Theorem 5.1 is Proposition 5.3. In
its proof we investigate properties of sets of lengths that are arithmetical
progressions with maximal difference. We need some preparatory results,
in particular on sets G0 such that min ∆(G0) is maximal. Note that several
of the occurring sets are just the sets considered in Lemma 3.4.

Lemma 5.3. Let g =
∑r

i=1 ei, G0 = {g} ∪ {e1, . . . , er} and

W1 = g

r∏
i=1

ep−1
i .

Then for every n ∈ N we have

L(Wn
1 ) = {n + i(r − 1) | i ∈ [0, n−

⌈
n

p

⌉
]}.
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Proof. As usual we set Wj = gj
∏p

i=1 ep−j
i for each j ∈ [1, p]. Then it

follows, either by a simple direct argument or by Lemma 4.1.2 and 3., that

A(G0) = {ep
i | i ∈ [1, r]} ∪ {Wj | j ∈ [1, p]}.

Let n ∈ N and s = n−
⌈

n
p

⌉
. Suppose that

Wn
1 =

p∏
ν=1

W jν
ν

r∏
ν=1

(ep
ν)

iν

with j1, . . . , jp, i1, . . . , ir ∈ N0. Clearly, we have n = vg(Wn
1 ) =

∑p
ν=1 νjν

hence
∑p

ν jν ∈ [n− s, n]. Since

k(
p∏

ν=1

W jν
ν ) =

p∑
ν=1

jνk(Wν) =
p∑

ν=1

jν(r −
ν(r − 1)

p
) = r

p∑
ν=1

jν − n
(r − 1)

p

and

n(r − r − 1
p

) = k(Wn
1 ) = r

p∑
ν=1

jν − n
r − 1

p
+

r∑
ν=1

iν ,

it follows that
p∑

ν=1

jν +
r∑

ν=1

iν =
p∑

ν=1

jν + n(r − r − 1
p

)− r

p∑
ν=1

jν + n
r − 1

p

= n + (n−
p∑

ν=1

jν)(r − 1) ∈ {n + i(r − 1) | i ∈ [0, s]}.

Conversely, let i ∈ [n − s, n]. Then there exist j1, . . . , jp ∈ N0 with∑p
ν=1 jν = i and

∑p
ν=1 νjν = n, which implies that

Wn
1 =

p∏
ν=1

W jν
ν

r∏
ν=1

(ep
i )

n−
Pp

ν=1 jν

and
p∑

ν=1

jν +
r∑

ν=1

(n−
p∑

ν=1

jν) = i + r(n− i) = n + (n− i)(r − 1).

Therefore, we obtain that

{n + i(r − 1) | i ∈ [0, s]} ⊂ L(Wn
1 ).

�

In the following considerations we need a result on certain half-factorial
sets. It was obtained in [25, Lemma 1] (cf. also [26, 5.]) and in [6, Lemma
3.6] a result is proved that contains it as a special case.
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Lemma 5.4. Let g = −
∑r

i=1 biei with bi ∈ [0, p− 1] for each i ∈ [1, r]. If
{g, e1, . . . , er} is half-factorial, then

∑r
i=1 bi = p− 1.

Lemma 5.5. Let p− 2 ≥ r and G0 ⊂ G. Then G0 ⊂ G is indecomposable
with min∆(G0) = p− 2 if and only if G0 = {−g, g} for some g ∈ G \ {0}.

Proof. If G0 = {−g, g} for some g ∈ G\{0}, then obviously G0 is indecom-
posable and Lemma 3.4 implies that min ∆(G0) = p− 2.

Conversely, let G0 ⊂ G be indecomposable with min ∆(G0) = p − 2.
Then |G0| ≥ 2. Suppose that r(〈G0〉) = 1 and let g ∈ G0. If ag ∈ G0

for some a ∈ [2, p − 1], then [10, Theorem 1] (respectively Lemma 3.3.4
with A = (ag)gp−a) implies that min∆(G0) | a − 1. Thus a = p − 1 and
G0 = {−g, g}.

Assume to the contrary that r(〈G0〉) ≥ 2, and let G1 ⊂ G0 be a min-
imal non-half-factorial subset. Then min∆(G0) | min∆(G1) by Lemma
3.3.1. Assume that G1 has some proper subset G2 which is not a minimal
generating set for 〈G2〉. Then Corollary 3.1 implies that

min∆(G1) | gcd({k(A)− 1 | A ∈ A(G0)})
hence

p− 2 =min ∆(G0) ≤ min∆(G1) ≤ max{k(A)− 1 | A ∈ A(G1)}

≤K(G)− 1 =
1
p
(1 + r(p− 1))− 1 ≤ 1

p
(1 + (p− 2)(p− 1))− 1,

a contradiction. Hence each proper subset of G1 is independent. Since G1

is minimal non-half-factorial and thus not independent, we get that G1 is
simple (also cf. [22, Lemma 4.4]). Since

min∆(G1) ≥ p− 2 > max{r − 1,
⌊p

2

⌋
− 1},

Proposition 4.1 implies that G1 = {−g, g} for some g ∈ G \ {0}.
Moreover, the considerations imply that every simple, non-half-factorial

subset of G0 is equal to {−g′, g′} for some g′ ∈ G0.
We set e′1 = g. Let {e′2, . . . , e′r′} ⊂ G0 such that {e′1, . . . , e′r′} is an

independent generating set for 〈G0〉. Since G0 is indecomposable, there
exists some h ∈ G0 such that h = −

∑r′

i=1 bie
′
i with bi ∈ [0, p − 1], b1 6= 0

and bj 6= 0 for some j ∈ [2, r′]. Let I = {i ∈ [1, r′] | bi 6= 0}. Then {h}∪{e′i |
i ∈ I} is simple and since |I| ≥ 2 we obtain that {h} ∪ {e′i | i ∈ I} is half-
factorial. Thus by Lemma 5.4 we have

∑
i∈I bi = p− 1. Clearly, −e′1 ∈ G0,

{−e′1} ∪ {e′2, . . . , e′r} is independent, h = −(p − b1)(−e′1) −
∑r′

i=2 bie
′
i and

{h,−e′1}∪{e′i | i ∈ I \ {1}} is simple and has to be half-factorial. However,
we have (p−b1)+

∑
i∈I\{1} bi = p−2b1+

∑
i∈I bi = p−1+p−2b1 6= p−1, since

p ≥ 3. We obtain, again by Lemma 5.4, that {h, e′1} ∪ {e′i | i ∈ I \ {1}} is
not half-factorial, a contradiction. Thus r(〈G0〉) = 1 and G0 = {−g, g}. �
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Proposition 5.2. Let p − 2 ≥ r and G0 ⊂ G a non-empty set. Then
min∆(G0) = p− 2 if and only if

L(G0) = {{n + 2k + i(p− 2) | i ∈ [0, k]} | n, k ∈ N0}.

In particular, if min∆(G0) = p− 2, then ρ(G0) = p
2 .

Proof. Let L denote the set on the right hand-side. If L(G0) = L, then
obviously min ∆(G0) = p− 2.

Conversely, suppose that min∆(G0) = p − 2. By [22, Proposition 3.10]
there exist uniquely determined non-empty subsets G1, . . . , Gd ⊂ G0 such
that

B(G0) =
d∏

i=1

B(Gi)

and consequently

L(G0) = {
d∑

i=1

Li | Li ∈ L(Gi)}.

Clearly, there exists some i ∈ [1, d] such that Gi is non-half-factorial.
Then Theorem 4.1 implies that

p− 2 = min ∆(G0) ≤ min∆(Gi) ≤ max ∆∗(G) = max{r− 1, p− 2} = p− 2

hence by Lemma 5.5 it follows that Gi = {−g, g} with some g ∈ G \ {0}.
Thus it remains to verify the following three assertions:

A1: L({−g, g}) = L for every g ∈ G \ {0}.
A2: If L,L′ ∈ L, then L + L′ ∈ L.
A3: ρ(G0) = p

2 .
Proof of A1: Let g ∈ G \ {0}. For n, k ∈ N0 we set

Bn,k = −gkpg(n+k)p ∈ B({−g, g}).

Then L(Bn,k) = {n + 2k + i(p− 2) | i ∈ [0, k]}, hence L ⊂ L({−g, g}).
Let B = −gvgw ∈ B({−g, g}). We may suppose w ≥ v. Clearly, w ≡

v mod p. Let m ∈ [0, p − 1] and n′, k′ ∈ N0, such that v = m + n′p and
w = m + (n′ + k′)p. Then B = (−gg)mBn′,k′ and

L(B) = m + L(Bn′,k′) = {(m + n′) + 2k′ + i(p− 2) | i ∈ [0, k′]} ∈ L.

Proof of A2: Let L,L′ ∈ L and n, n′, k, k′ ∈ N0 such that L =
{n + 2k + i(p − 2) | i ∈ [0, k]} and L′ = {n′ + 2k′ + i(p − 2) | i ∈ [0, k′]}.
Then we have

L + L′ ={n + 2k + i(p− 2) | i ∈ [0, k]}+ {n′ + 2k′ + i(p− 2) | i ∈ [0, k′]}
={n + n′ + 2(k + k′) + i(p− 2) | i ∈ [0, k + k′]} ∈ L.
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Proof of A3: Let g ∈ G\{0} and set G′ = {−g, g}. Since D(G′) = p, Lemma
5.1.2 implies that ρ(G′) = p

2 . Hence by Lemma 5.1.1 and the considerations
of this proof, we obtain ρ(G0) = p

2 . �

Next we investigate blocks that have arithmetical progressions with dif-
ference p − 2 as sets of lengths. We will show that such blocks can be
factorized in a block for which the set of distances of the support is a sub-
set of {p−2} and a block with bounded length. Problems of this type were
initially investigate in [8] to determine the structure of sets of lengths in
block monoids.

Lemma 5.6. Let p− 2 ≥ r. Then there exists a constant N(G) ∈ N such
that for every B ∈ B(G0) with ∆(L(B)) = {p− 2} the following statement
holds: there exist B1, B2 ∈ B(G) with |B1| ≤ N(G), ∆(supp(B2)) ⊂ {p−2}
and B = B1B2.

Proof. Let B ∈ B(G) with ∆(L(B)) = {p − 2}. We construct blocks
B1, B2 ∈ B(G) in such a way that |B1| is bounded above by a constant, not
depending on B but only on G, and all remaining conditions are satisfied.
We set G0 = supp(B) and proceed in two steps.

1. We assert that there is some N1(G) ∈ N and a partition G0 = G1∪̇G2

such that B = F1F2 with Fi ∈ F(Gi) for i ∈ [1, 2], ∆(G2) ⊂ {p − 2} and
|F1| ≤ N1(G).

For every non-half-factorial set G′
0 ⊂ G, let B(G′

0) ∈ B(G′
0) such that

min∆(G′
0) = min ∆(L(B(G′

0))).

Let

N ′
1(G) = max{max{vg(B(G′

0)) | g ∈ G′
0} | G′

0 ⊂ G non-half-factorial},
G2 = {g ∈ G0 | vg(B) ≥ N ′

1(G)} and G1 = G0 \G2.
If G2 = ∅, we have ∆(G2) = ∅, F2 = 1, F1 = B and |F1| = |B| ≤

|G|N ′
1(G).

Suppose that G2 6= ∅. Since B(G2) | B, it follows that

p− 2 = min ∆(L(B)) ≤ min∆(L(B(G2))) = min∆(G2).

Theorem 4.1 implies that

min∆(G2) ≤ max ∆∗(G) = max{p− 2, r − 1} = p− 2

hence min∆(G2) = p−2. By Proposition 5.2 we infer that ∆(G2) = {p−2}.
By construction, we obtain that

|F1| ≤ |G1|N ′
1(G) ≤ |G|N ′

1(G).

2. Let B2 ∈ B(G) be maximal (with respect to divisibility) such that
B2|F2. Then ∆(supp(B2)) ⊂ ∆(G2) ⊂ {p− 2} and B−1

2 F2 is zero-sumfree
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and therefore |B−1
2 F2| < D(G). Setting B1 = F1(B−1

2 F2) we obtain that
B = B1B2 and

|B1| ≤ |G|N ′
1(G) + D(G).

�

Proposition 5.3. Let p and q be primes with p > q ≥ 2 and (p−1)(q−1) ≥
3. Then

L(Cq−1
p ) 6= L(Cp−1

q ).

Proof. If q = 2, then p ≥ 5 and by Proposition 5.1 we get that ∆1(C
p−1
q ) is

an interval and ∆1(C
q−1
p ) is not an interval and consequently L(Cq−1

p ) 6=
L(Cp−1

q ).
Suppose that q ≥ 3. If k ∈ N with q − 1 | k, then Lemma 5.3 (with

r = p− 1, p = q, n = k + k
q−1 and s = n−

⌈
n
q

⌉
= k) implies that

Lk = {(k +
k

q − 1
) + i(p− 2) | i ∈ [0, k]} ∈ L(Cp−1

q ).

Note that ρ(Lk) = max Lk
min Lk

= q+(q−1)(p−2)
q .

We show that Lk /∈ L(Cq−1
p ) for sufficiently large k. Let k ∈ N with

q− 1 | k and assume to the contrary there is some Bk ∈ B(Cq−1
p ) such that

L(Bk) = Lk.
By Lemma 5.6 there exist some constant N(Cq−1

p ) ∈ N, not depending
on k, and blocks Bk,1, Bk,2 ∈ B(G) with |Bk,1| ≤ N(Cq−1

p ) and ∆(Gk) ⊂
{p − 2}, where Gk = supp(Bk,2), such that Bk = Bk,1Bk,2. If k is large
enough, then |L(Bk,2)| > 1 hence ∆(Gk) = {p−2}. Moreover, for any l ∈ N
there exists some k(l) ∈ N such that |L(Bk,2)| > l if k ≥ k(l).

By [8, Proposition 5] we obtain that there exists some constant M ∈
N not depending on k (for example M = N(Cq−1

p )D(Cq−1
p ) is a possible

choice) such that
max L(Bk) ≤ max L(Bk,2) + M

and
min L(Bk) ≥ min L(Bk,2)−M.

Thus we obtain, if k is sufficiently large, that

q + (q − 1)(p− 2)
q

= ρ(Lk) = ρ(L(Bk))

≤
max L(Bk,2) + M

min L(Bk,2)−M
=

ρ(L(Bk,2)) + M
min L(Bk,2)

1− M
min L(Bk,2)

.
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Since by Lemma 5.1.2 and Proposition 5.2 ρ(L(Bk,2)) ≤ ρ(Gk) = p
2 and

since |L(Bk,2)| and hence min L(Bk,2) can be arbitrarily large, we obtain
that for any ε > 0

M

min(L(Bk,2))
< ε,

if k is sufficiently large. Hence

p

2
<

q + (q − 1)(p− 2)
q

≤
p
2 + ε

1− ε
,

for any ε with 0 < ε < 1, a contradiction. �

Proof of Theorem 5.1. Let G be an elementary p-group with r(G) = r and
G′ an elementary q-group with r(G′) = s and D(G) 6= 3. Suppose that
L(G) = L(G′). We have to prove that p = q and r = s. By definition of
∆1(G) and by Lemma 5.2 it follows that

D(G) = D(G′) and ∆1(G) = ∆1(G′).

Thus we obtain

r(p− 1) = D(G)− 1 = D(G′)− 1 = s(q − 1)

and, by Proposition 5.1,

max{p− 2, r − 1} = ∆1(G) = ∆1(G′) = max{q − 2, s− 1}.

If max{p− 2, r − 1} = p− 2, then either

p− 2 = q − 2 hence p = q and r = s

or

p− 2 = s− 1 hence s = p− 1 and r = q − 1.

If max{p− 2, r − 1} = r − 1, then either

r − 1 = s− 1 hence r = s and p = q

or

r − 1 = q − 2 hence r = q − 1 and s = p− 1.

Suppose that s = p− 1 and r = q − 1. If D(G) = 2, then p = q = 2 and
r = s = 1. If D(G) = (q − 1)(p − 1) + 1 ≥ 4, then Proposition 5.3 implies
that p = q and hence r = s. �
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