An explicit formula for the Mahler measure of the -variable Laurent polynomial is given, in terms of dilogarithms and trilogarithms.
On montre une formule explicite pour la mesure de Mahler du polynôme en termes de dilogarithmes et trilogarithmes.
@article{JTNB_2002__14_2_683_0, author = {Chris J. Smyth}, title = {An explicit formula for the {Mahler} measure of a family of $3$-variable polynomials}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {683--700}, publisher = {Universit\'e Bordeaux I}, volume = {14}, number = {2}, year = {2002}, zbl = {1071.11018}, mrnumber = {2040701}, language = {en}, url = {https://jtnb.centre-mersenne.org/item/JTNB_2002__14_2_683_0/} }
TY - JOUR AU - Chris J. Smyth TI - An explicit formula for the Mahler measure of a family of $3$-variable polynomials JO - Journal de théorie des nombres de Bordeaux PY - 2002 SP - 683 EP - 700 VL - 14 IS - 2 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_2002__14_2_683_0/ LA - en ID - JTNB_2002__14_2_683_0 ER -
%0 Journal Article %A Chris J. Smyth %T An explicit formula for the Mahler measure of a family of $3$-variable polynomials %J Journal de théorie des nombres de Bordeaux %D 2002 %P 683-700 %V 14 %N 2 %I Université Bordeaux I %U https://jtnb.centre-mersenne.org/item/JTNB_2002__14_2_683_0/ %G en %F JTNB_2002__14_2_683_0
Chris J. Smyth. An explicit formula for the Mahler measure of a family of $3$-variable polynomials. Journal de théorie des nombres de Bordeaux, Volume 14 (2002) no. 2, pp. 683-700. https://jtnb.centre-mersenne.org/item/JTNB_2002__14_2_683_0/
[B1] Speculations concerning the range of Mahler's measure. Canad. Math Bull. 24 (1981), 453-469. | MR | Zbl
,[B2] Mahler's measure and special values of L-functions. Experiment. Math. 7 (1998), 37-82. | MR | Zbl
,[B3] Uniform approximation to Mahler's measure in several variables. Canad. Math. Bull. 41 (1998), 125-128. | MR | Zbl
,[B4] Mahler's measure and special values of L-functions-some conjectures. Number theory in progress, Vol. 1 (Zakopane-Koscielisko, 1997), 27-34, de Gruyter, Berlin, 1999. | MR | Zbl
,[BRV] Mahler's measure and the dilogarithm. I. Canad. J. Math. 54 (2002), 468-492. | MR | Zbl
, ,[K] Über die Transcendenten, welche aus wiederholten Integrntionen rationaler Formeln entstehen. J. für Math. (Crelle) 21 (1840), 328-371. | Zbl
,[L] Dilogarithms and Associated Functions. Macdonald, London, 1958. | MR | Zbl
,[R] Relations between Mahler's measure and values of L-series. Canad. J. Math. 39 (1987), 694-732. | MR | Zbl
,[RV] Modular Mahler measures. I, Topics in number theory (University Park, PA, 1997), 17-48, Math. Appl., 467, Kluwer Acad. Publ., Dordrecht, 1999. | MR | Zbl
,[Sc] Polynomials with Special Regard to Reducibility. With an appendix by Umberto Zannier. Encyclopedia of Mathematics and its Applications, 77, Cambridge University Press, Cambridge, 2000. | MR | Zbl
,[Sm] On measures of polynomials in several variables. Bull. Austral. Math. Soc. Ser. A 23 (1981), 49-63. Corrigendum (with ): Bull. Austral. Math. Soc. Ser. A 26 (1982), 317-319. | MR | Zbl
,[Z] The Bloch- Wigner-Ramakrishnan polylogarithm function. Math. Ann. 286 (1990), 613-624. | MR | Zbl
,