Let be a real algebraic number of degree over whose conjugates are not real. There exists an unit of the ring of integer of for which it is possible to describe the set of all best approximation vectors of .’
Soit un nombre algébrique réel de degré dont les conjugués ne sont pas réels. Il existe une unité de l’anneau des entiers de pour laquelle il est possible de décrire l’ensemble de tous les vecteurs meilleurs approximations de .
@article{JTNB_2002__14_2_403_0, author = {Nicolas Chevallier}, title = {Best simultaneous diophantine approximations of some cubic algebraic numbers}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {403--414}, publisher = {Universit\'e Bordeaux I}, volume = {14}, number = {2}, year = {2002}, zbl = {1071.11043}, mrnumber = {2040684}, language = {en}, url = {https://jtnb.centre-mersenne.org/item/JTNB_2002__14_2_403_0/} }
TY - JOUR AU - Nicolas Chevallier TI - Best simultaneous diophantine approximations of some cubic algebraic numbers JO - Journal de théorie des nombres de Bordeaux PY - 2002 SP - 403 EP - 414 VL - 14 IS - 2 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_2002__14_2_403_0/ LA - en ID - JTNB_2002__14_2_403_0 ER -
%0 Journal Article %A Nicolas Chevallier %T Best simultaneous diophantine approximations of some cubic algebraic numbers %J Journal de théorie des nombres de Bordeaux %D 2002 %P 403-414 %V 14 %N 2 %I Université Bordeaux I %U https://jtnb.centre-mersenne.org/item/JTNB_2002__14_2_403_0/ %G en %F JTNB_2002__14_2_403_0
Nicolas Chevallier. Best simultaneous diophantine approximations of some cubic algebraic numbers. Journal de théorie des nombres de Bordeaux, Volume 14 (2002) no. 2, pp. 403-414. https://jtnb.centre-mersenne.org/item/JTNB_2002__14_2_403_0/
[1] Simultaneous diophantine Approximations and Cubic Irrationals. Pacific J. Math. 30 (1969), 1-14. | MR | Zbl
,[2] Simultaneous Asymptotic diophantine Approximations to a Basis of a Real Cubic Field. J. Number Theory 1 (1969), 179-194. | MR | Zbl
,[3] Zur Theory von Jacobi's Kettenbruch-Algorithmen, J. Reine Angew. Math. 75 (1873), 25-34. | JFM
,[4] The Jacobi-Perron algorithm-Its theory and applications, Lectures Notes in Mathematics 207, Springer-Verlag, 1971. | MR | Zbl
,[5] Multi-dimensional continued fraction algorithms, Mathematics Center Tracts 155, Amsterdam, 1982. | MR | Zbl
,[6] An introduction to diophantine approximation. Cambridge University Press, 1965. | MR
,[7] Propriété combinatoires, ergodiques et arithmétiques de la substitution de Tribonacci. J. Théor. Nombres Bordeaux 13 (2001), 371-394. | Numdam | MR | Zbl
, , ,[8] Meilleures approximations d'un élément du tore T2 et géométrie de cet élément. Acta Arith. 78 (1996), 19-35. | MR | Zbl
,[9] Algorithme de Jacobi-Perron dans les extensions cubiques. C. R. Acad. Sci. Paris Sér. A 280 (1975), 183-186. | MR | Zbl
, ,[10] Some New results in simultaneous diophantine approximation. In Proc. of Queen's Number Theory Conference 1979 (P. Ribenboim, Ed.), Queen's Papers in Pure and Applied Math. No. 54 (1980), 453-574. | Zbl
,[11] Best simultaneous diophantine approximation I. Growth rates of best approximations denominators. Trans. Amer. Math. Soc. 272 (1982), 545-554. | MR | Zbl
,[12] Über periodish Approximationen Algebraischer Zalhen. Acta Math. 26 (1902), 333-351. | JFM
,[13] Grundlagen für eine Theorie des Jacobischen Kettenalgorithmus. Math. Ann. 64 (1907), 1-76. | JFM | MR
,[14] Nombre algébrique et substitution. Bull. Soc. Math. France 110 (1982), 147-178. | Numdam | MR | Zbl
,