JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

NICOLAS CHEVALLIER

Best simultaneous diophantine approximations of some cubic algebraic numbers

Journal de Théorie des Nombres de Bordeaux, tome 14, n° 2 (2002), p. 403-414

http://www.numdam.org/item?id=JTNB 2002 14 2 403 0>

© Université Bordeaux 1, 2002, tous droits réservés.

L'accès aux archives de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Best simultaneous diophantine approximations of some cubic algebraic numbers

par NICOLAS CHEVALLIER

RÉSUMÉ. Soit α un nombre algébrique réel de degré 3 dont les conjugués ne sont pas réels. Il existe une unité ζ de l'anneau des entiers de $K=\mathbb{Q}(\alpha)$ pour laquelle il est possible de décrire l'ensemble de tous les vecteurs meilleurs approximations de $\theta=(\zeta,\zeta^2)$.

ABSTRACT. Let α be a real algebraic number of degree 3 over \mathbb{Q} whose conjugates are not real. There exists an unit ζ of the ring of integer of $K = \mathbb{Q}(\alpha)$ for which it is possible to describe the set of all best approximation vectors of $\theta = (\zeta, \zeta^2)$.

1. Introduction

In his first paper ([10]) on best simultaneous diophantine approximations J. C. Lagarias gives an interesting result which, he said, is in essence a corollary of W. W. Adams' results ([1] and [2]):

Let $[1, \alpha_1, \alpha_2]$ be a $\mathbb Q$ basis to a non-totally real cubic field. Then the best simultaneous approximations of $\alpha = (\alpha_1, \alpha_2)$ (see definition below) with respect to a given norm N are a subset of

$${q_m^{(j)}: m \ge 0, \ 1 \le j \le p}$$

where the $q_m^{(j)}$ satisfy a third-order linear recurrence (with constant coefficients).

$$q_{m+3} + a_2 q_{m+2} + a_1 q_{m+1} \pm q_m = 0$$

for a finite set of initial conditions $q_0^{(j)}$, $q_1^{(j)}$, $q_2^{(j)}$, for $1 \leq j \leq p$. The fundamental unit ξ of $K = \mathbb{Q}(\alpha_1, \alpha_2)$ satisfies

$$\xi^3 - a_2 \xi^2 - a_1 \xi \pm 1 = 0.$$

Now consider the particular case $X=(\zeta,\zeta^2)\in\mathbb{R}^2$ where ζ is the unique real root of $\zeta^3+\zeta^2+\zeta-1=0$. The vector X can be seen as a two-dimensional golden number. N. Chekhova, P. Hubert and A. Messaoudi were able to precise Lagarias' result (cf. [7]):

Manuscrit reçu le 10 juillet 2000.

There exists a euclidean norm on \mathbb{R}^2 such that all best diophantine approximations of X are given by the 'Tribonacci' sequence $(q_n)_{n\in\mathbb{N}}$ defined by

$$q_0 = 1$$
, $q_2 = 2$, $q_3 = 4$, $q_{n+3} = q_{n+2} + q_{n+1} + q_n$.

The aim of this work is to make precise Lagarias' result in the same way as N. Chekhova, P. Hubert and A. Messaoudi.

Definition ([10],[8]). Let N be a norm on \mathbb{R}^2 and $\theta \in \mathbb{R}^2$.

1) A strictly positive integer q is a best approximation (denominator) of θ with respect to N if

$$\forall k \in \{1,\ldots,q-1\}, \ \min_{P \in \mathbb{Z}^2} N(q\theta-P) < \min_{Q \in \mathbb{Z}^2} N(k\theta-Q)$$

2) An element $q\theta - P$ of $\mathbb{Z}\theta + \mathbb{Z}^2$ is a best approximation vector of θ with respect to N if q is a best approximation of θ and if

$$N(q\theta-P)=\min_{Q\in\mathbb{Z}^2}N(q\theta-Q)$$

We will call $\mathcal{M}(\theta)$ the set of all best approximation vectors of θ .

Using Dirichlet's theorem it is easy to show that there exists a positive constant C depending only on the norm N, such that for all θ in \mathbb{R}^2 and all best approximation vectors $q\theta - P$ of θ

$$N(q\theta-P)\leq \frac{C}{q^{1/2}}.$$

If $[1, \alpha_1, \alpha_2]$ is a Q-basis of a real cubic field then $\theta = (\alpha_1, \alpha_2)$ is badly approximable (cf. [6] p. 79):

there exists c > 0 such that for all best approximation vectors $q\theta - P$ of θ

$$N(q heta-P)\geq rac{c}{a^{1/2}}.$$

Let $\theta \in \mathbb{R}^2 \setminus \mathbb{Q}^2$ and $\Lambda = \theta \mathbb{Z} + \mathbb{Z}^2$. Endow Λ with its natural \mathbb{Z} -basis θ , $e_1 = (1,0)$, $e_2 = (0,1)$. For a matrix $B \in M_3(\mathbb{Z})$ and $X = x_0\theta + x_1e_1 + x_2e_2 \in \Lambda$, the action BX = Y of B on X is naturally defined: the coordinates vector of Y is the matrix product of B by the coordinates vector of X.

We shall prove the following results.

Proposition 1. Let $a_1, a_2 \in \mathbb{N}^*$. Suppose $P(x) = x^3 + a_2x^2 + a_1x - 1$ has a unique real root ζ . Call $\theta = (\zeta, \zeta^2)$ and B the matrix

$$B = \left(\begin{array}{ccc} a_1 & -a_2 & -1 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right).$$

There exist a norm N on \mathbb{R}^2 and a finite number of best approximation vectors $X_i = q_i \theta - P_i$, i = 1, ..., m such that

$$\mathcal{M}(\theta)\setminus\{B^nX_i:n\in\mathbb{N}\ and\ i=1,\ldots,m\}$$

is a finite set.

Proposition 2. Suppose α is a real algebraic number of degree 3 over \mathbb{Q} whose conjugates are not real. There exist a unit ζ of the ring of integer of $K = \mathbb{Q}(\alpha)$, two positive integers a_1 and a_2 and euclidean norm on \mathbb{R}^2 such that the set of best approximation vectors of $\theta = (\zeta, \zeta^2)$, is

$$\mathcal{M}(\theta) = \{B^n \theta : n \in \mathbb{N}\}$$

where

$$B = \left(\begin{array}{ccc} a_1 & -a_2 & -1 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right).$$

The proof of Proposition 1 is quite different from Chechkova, Hubert and Messaoudi's one. It is based on two simple facts:

Let $a_1, a_2 \in \mathbb{N}^*$. Suppose $P(x) = x^3 + a_2x^2 + a_1x - 1$ has a unique real root ζ and call $\theta = (\zeta, \zeta^2)$.

- 1) Following G. Rauzy ([14]) we construct a euclidean norm N on \mathbb{R}^2 and a linear contracting similarity F on \mathbb{R}^2 (i.e. N(F(x)) = rN(x) for all x in \mathbb{R}^2 where the ratio $r \in]0,1[$) which is one to one on $\Lambda = \mathbb{Z}\theta + \mathbb{Z}^2$.
- 2) Since $a_1, a_2 > 0$ the map F preserves the positive cone $\Lambda^+ = \mathbb{N}\theta \mathbb{N}^2$. We deduce from these observations that F send best approximation vectors of θ to best approximation vectors of θ (see lemma 2) and proposition 1 follow easily. Our method cannot be extended to higher dimension, because for F to be a similarity, it is necessary that P has one dominant root, all other roots being of the same modulus, and H. Minkowski proved that this can only occur for polynomials of degree 2 or 3 ([12]).

The sequence of best approximation vectors of $\theta \in \mathbb{R}^2$ may be seen as a two-dimensional continued fraction 'algorithm'. In this case Proposition 1 means that the 'development' of (ζ, ζ^2) becomes periodic when ζ is the unique real root of the polynomial $x^3 + a_2x^2 + a_1x - 1$ with $a_1, a_2 \in \mathbb{N}$. This may be compared to the following results about Jacobi-Perron's algorithm:

(O. Perron [13]) Let ζ be the root of $P \in \mathbb{Z}[X]$, $\deg P = 3$. If the development of (ζ, ζ^2) by Jacobi-Perron's algorithm becomes periodic and if this development gives good approximations, i.e.

$$\max(|q_n\zeta - p_{1,n}|, |q_n\zeta^2 - p_{2,n}|) \le \frac{C}{q_n^{1/2}}$$

where $(p_{1,n}, p_{2,n}, q_n)_{n \in \mathbb{N}}$ are given by Jacobi-Perron's algorithm, then the conjugates of ζ are complex (see [4] p.7).

(P. Bachman [1]) Let $\zeta = d^{\frac{1}{3}}$ where d is a cube-free integer greater than 1. If the development by Jacobi-Perron's algorithm of (ζ, ζ^2) turns out to be periodic it gives good approximations as above.

(E. Dubois - R. Paysant [9]) If K is a cubic extension of \mathbb{Q} then there exist β_1, β_2 in K, linearly independent with 1, such that the development of (β_1, β_2) by Jacobi-Perron's algorithm is periodic.

O. Perron (see [13] Theorem VII or Brentjes [5] Theorem 3.4.) also gives some numbers with a purely periodic development of length 1.

We should also note that A. J. Brentjes gives a two-dimensional continued fraction algorithm which finds all best approximations of a certain kind and he uses it to find the coordinates of the fundamental unit in a basis of the ring of integers of a non-totally real cubic field. (see Brentjes' book on multi-dimensional continued fraction algorithms [5] section 5F).

Finally, we shall give a proof of Chechkova, Hubert and Messaoudi's result using proposition 1 together with the set of best approximations corresponding to the equation $\zeta^3 + 2\zeta^2 + \zeta = 1$.

2. The Rauzy norm

Fix $a_1, a_2 \in \mathbb{N}^*$ and suppose that the polynomial $P(x) = -x^3 + a_1x^2 + a_2x + 1$ has a unique real root. Endow \mathbb{R}^3 with its standard basis e_1, e_2, e_3 . Let M be the matrix

$$M = \left(\begin{array}{ccc} a_1 & a_2 & 1\\ 1 & 0 & 0\\ 0 & 1 & 0 \end{array}\right).$$

The characteristic polynomial of M is $-x^3 + a_1x^2 + a_2x + 1$, the unique positive eigenvalue of M is $\lambda = \frac{1}{\zeta}$ and $\Theta = (\zeta, \zeta^2, \zeta^3)$ is the eigenvector associated with λ . Let l be the linear form on \mathbb{R}^3 with coefficients a_1, a_2, a_1 ; we have $l(\Theta) = l(e_3) = 1$. Put $\Delta(X) = X - l(X)\Theta$. $\Delta \circ M$ map ker l into itself and $\mathbb{R}\Theta \subseteq \ker \Delta \circ M$. The eigenvalues of the restriction of $\Delta \circ M$ to $\ker l$, are λ_1 and $\lambda_2 = \overline{\lambda_1}$, the two other eigenvalues of M. In fact, if Z is an eigenvector of M associated to λ_1 then $\Delta(Z) \in \ker l$ and

$$\Delta \circ M \circ \Delta(Z) = \Delta(\lambda_1 Z - l(Z)\lambda\Theta) = \lambda_1 \Delta(Z).$$

Call p the projection \mathbb{R}^3 onto \mathbb{R}^2 . p is one to one from ker l onto \mathbb{R}^2 , call i its inverse map and consider the linear map

$$F: X \in \mathbb{R}^2 \to p \circ \Delta \circ M \circ i(X) \in \mathbb{R}^2$$
.

The linear maps F and $\Delta \circ M$ are conjugate, therefore the eigenvalues of F are λ_1 and λ_2 .

Lemma 3. F is one to one of $\Lambda = \mathbb{Z}\theta + \mathbb{Z}^2$ on itself, where $\theta = (\zeta, \zeta^2)$.

Proof. Since $i(\theta) = \Theta - e_3$ we have

$$F(\theta) = p \circ \Delta(\lambda \Theta - e_1) = p(l(e_1)\Theta - e_1) = a_1\theta - e_1 \in \Lambda.$$

Similarly $i(e_k) = e_k - l(e_k)e_3$, k = 1, 2, then $X_k = M \circ i(e_k) \in \mathbb{Z}^3$ and

$$F(e_k) = p(X_k - l(X_k)\Theta) = p(X_k) - l(X_k)\theta \in \Lambda.$$

Since F maps Λ into itself, it remains to show that F is one to one. Call B the matrix of F with respect to the basis (θ, e_1, e_2) . We have

$$X_1 = M(e_1 - l(e_1)e_3) = a_1e_1 + e_2 - l(e_1)e_1 = e_2,$$

 $X_2 = M(e_2 - l(e_2)e_3) = a_2e_1 + e_3 - l(e_2)e_1 = e_3$

so that

$$B = \left(\begin{array}{ccc} a_1 & -a_2 & -1 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right)$$

and

$$\det B = -1.$$

Call $\Lambda^+ = \{q\theta - P : q \in \mathbb{N} \text{ and } P \in \mathbb{N}^2\}$. Since a_1 and a_2 are positive we have:

Corollary 4. $F(\Lambda^+) \subseteq \Lambda^+$.

Since $\lambda_2 = \overline{\lambda_1}$ there exists a euclidean norm N on \mathbb{R}^2 such that F is a linear similar map for this norm (i.e. N(F(x)) = rN(x) for all x in \mathbb{R}^2 , where r in \mathbb{R}^+ is call the ratio of F). The ratio of F is $r = |\lambda_1| = \frac{1}{\sqrt{\lambda}} = \sqrt{\zeta} < 1$. Now let us determine the matrix M of the bilinear form $\langle x, y \rangle$ associated with N, this is necessary for Proposition 2 but not for Proposition 1. M is unique up to a multiplicative constant. Since the ratio of F is $\sqrt{\zeta}$,

$$\langle F(e_1), F(e_2) \rangle = \zeta \langle e_1, e_2 \rangle,$$

 $\langle F(e_2), F(e_2) \rangle = \zeta \langle e_2, e_2 \rangle,$

and computing $F(e_1)$ and $F(e_2)$, we find that $\langle e_1, e_1 \rangle$, $\langle e_1, e_2 \rangle$ and $\langle e_2, e_2 \rangle$ satisfy

$$\begin{cases} a_2 \zeta \langle e_1, e_1 \rangle + (-2 + 2a_2 \zeta^2) \langle e_1, e_2 \rangle + (-\zeta + a_2 \zeta^3) \langle e_2, e_2 \rangle = 0 \\ \zeta \langle e_1, e_1 \rangle + 2\zeta^2 \langle e_1, e_2 \rangle + (\zeta^3 - 1) \langle e_2, e_2 \rangle = 0. \end{cases}$$

Since $1 = a_1 \zeta + a_2 \zeta^2 + \zeta^3$, we find

$$\langle e_1, e_1 \rangle = 2(a_1 + \zeta^2), \ \langle e_1, e_2 \rangle = a_2 - \zeta, \ \langle e_2, e_2 \rangle = 2.$$

3. Best diophantine approximations

We suppose \mathbb{R}^2 is endowed with the norm N defined in the previous section.

Notations. 1) $\rho_0 = d(0,\{(x_1,x_2) \in \mathbb{R}^2 : \sup(|x_1|,|x_2|) \ge 1\}).$

2) For $x \in \mathbb{R}$ we denote the nearest integer to x by I(x) (it is well-defined for all irrational number x).

We will often use the simple fact:

Let $X = (x_1, x_2) \in \mathbb{R}^2$ and $P = (p_1, p_2) \in \mathbb{Z}^2$. If $N(X - P) < \frac{1}{2}\rho_0$ then $p_1 = I(x_1)$, $p_2 = I(x_2)$ and P is the nearest point of \mathbb{Z}^2 to X (for the norm N).

We will say that two best approximation vectors $q_1\theta - P_1$ and $q_2\theta - P_2$ are consecutive if q_1 and q_2 are consecutive best approximations.

Lemma 5. 1) If $q\theta - P$ is a best approximation vector such that $N(q\theta - P) < \frac{1}{2}\rho_0$ then $q'\theta - P' = F(q\theta - P)$ is a best approximation vector of θ . 2) Let q_1 and q_2 be two consecutive best approximations of θ and $q_1\theta - P_1$ and $q_2\theta - P_2$ be two corresponding best approximation vectors. If $N(q_2\theta - P_2) < \frac{1}{2}\rho_0$ and if $F(q_1\theta - P_1)$ is a best approximation vector then $F(q_1\theta - P_1)$ and $F(q_2\theta - P_2)$ are consecutive best approximation vectors.

- Proof. 1) Let $Y=k'\theta-R'\in\Lambda\backslash\{(0,0)\}$ be such that $N(Y)\leq N(q'\theta-P')$. We have to prove that |k'|>q' or that $k'\theta-R'=\pm(q'\theta-P')$. By Lemma 1, we have Y=F(X) with $X=k\theta-R\in\Lambda$. Since F is a similar map, we have $N(X)\leq N(q\theta-P)$ and by the definition of best approximations $|k|\geq q$. If k<0 we can replace Y by -Y so we can suppose that $k\geq q$. Since $N(X)\leq N(q\theta-P)<\frac{1}{2}\rho_0,\ R=(I(k\zeta),I(k\zeta^2))$ and $P=(I(q\zeta),I(q\zeta^2))$. The nearest integer function $x\to I(x)$ is nondecreasing so $I(k\zeta)\geq I(q\zeta)$ and $I(k\zeta^2)\geq I(q\zeta^2)$. This shows that $(k\theta-R)-(q\theta-P)\in\Lambda^+$ and by corollary $4,F(k\theta-R)-F(q\theta-P)\in\Lambda^+$. Therefore $k'\geq q'$. If k'=q', we have $R'=(I(k'\zeta),I(k'\zeta^2))=(I(q'\zeta),I(q'\zeta^2))=P'$.
- 2) Put $F(q_i\theta P_i) = k_i\theta R_i$, i = 1, 2. Suppose $k\theta R$ is a best approximation vector with $k_1 < k \le k_2$. We want to prove that $k\theta R = k_2\theta R_2$. Put $F^{-1}(k\theta R) = q\theta P$. On the one hand, since F is similar, we have $N(q\theta P) < N(q_1\theta P_1)$, so $q > q_1$. Furthermore q_1 and q_2 are consecutive best approximations, so $q \ge q_2$.

On the other hand, $k_1\theta-R_1=F(q_1\theta-P_1)$ is a best approximation with $N(k_1\theta-R_1)=N(F(q_1\theta-P_1)< N(q_1\theta-P_1),$ then $k_1\geq q_2$ and $N(k_1\theta-P_1)\leq N(q_2\theta-P_2)<\frac{1}{2}\rho_0$. Therefore $N(k_2\theta-R_2)$ and $N(k\theta-R)<\frac{1}{2}\rho_0$. It follows that

$$R = (I(k\zeta), I(k\zeta^2)), R_2 = (I(k_2\zeta), I(k_2\zeta^2)).$$

We have $I(k\zeta) \leq I(k_2\zeta)$ for $k \leq k_2$. Using the matrix B we see that R = (q, .) and $R_2 = (q_2, .)$. This shows $q \leq q_2$ and $q = q_2$, which implies $q\theta - P = q_2\theta - P_2$ and $k\theta - R = k_2\theta - R_2$.

The increasing sequence of all best approximations of θ will be denoted by $(q_n)_{n\in\mathbb{N}}$ $(q_0=1)$.

Proposition 6. If $q_{n_0}\theta - P_{n_0}, \ldots, q_{n_0+m}\theta - P_{n_0+m}$ are (consecutive) best approximation vectors such that $F(q_{n_0}\theta - P_{n_0}) = q_{n_0+m}\theta - P_{n_0+m}$ and $N(q_{n_0+1}\theta - P_{n_0+1}) < \frac{1}{2}\rho_0$, then for all $j \ge 0$ and all $k \in 0, \ldots, m-1$,

$$q_{n_0+jm+k}\theta - P_{n_0+jm+k} = F^j(q_{n_0+k}\theta - P_{n_0+k}).$$

Proof. Put $V_n = q_n \theta - P_n$. The previous lemma shows that $F(V_{n_0+k})$, $k = 0, \ldots, m$, are consecutive best approximation vectors. By induction on $j \geq 0$, we see that $F^j(V_{n_0+k}) = V_{n_0+jm+k}$, $k = 0, \ldots, m$ are consecutive best approximation vectors and $F(V_{n_0+jm}) = V_{n_0+(j+1)m}$.

Proof of Proposition 1. Since $\lim_{n\to\infty} \min_{P\in\mathbb{Z}^2} N(q_n\theta-P)=0$, there exists an integer n_0 such that for each $n\geq n_0$, $N(q_n\theta-P_n)<\frac{1}{2}\rho_0$. By Lemma 4, 1), $F(q_{n_0}\theta-P_{n_0})$ is a best approximation vector and Proposition 1 follows of Proposition 6.

4. Proof of Proposition 2

Lemma 7. Let $P \in \mathbb{Q}$ be an irreducible polynomial of degree 3 with a unique real root α and $K = \mathbb{Q}(\alpha)$. There exist infinitely many $\lambda \in K$ such that

- i) $\lambda > 1$
- ii) λ is a root of $Q(x) = x^3 a_1x^2 a_2x 1$
- iii) $a_1, a_2 \in \mathbb{N}$ and $3a_1 \geq a_2^2$.

Proof. Since P has a unique real root, Dirichlet's theorem shows that the group of unit of the integral ring of K contains an abelian free sub-group G of rank 1. Let $\xi \neq 1$ be in G. We can suppose $\xi > 1$ and the norm $N_K(\xi) = 1$. The conjugates of ξ are not real because those of α are not. Call γ and $\overline{\gamma}$ these conjugates. We have $\xi \gamma \overline{\gamma} = 1$ and $|\gamma| < 1$ since the norm of ξ is 1 and $\xi > 1$. We will show that $\lambda = \xi^m$ satisfy i), ii) and iii) for infinitely many $m \in \mathbb{N}$.

The minimal polynomial of λ is $Q(x) = x^3 - a_1x^2 - a_2x - 1$ with

$$a_1 = a_1(m) = \xi^m + \gamma^m + \overline{\gamma}^m$$

 $a_2 = a_2(m) = -[\xi^m(\gamma^m + \overline{\gamma}^m) + |\gamma|^{2m}]$

Since $\xi > 1 > |\gamma|$, a_1 is positive for m large and a_2 will be positive if the argument of γ is well chosen. Call α the argument of γ and $\rho = \frac{1}{\sqrt{\xi}}$ its modulus.

First case. $\frac{\alpha}{2\pi} \notin \mathbb{Q}$.

There exist infinitely many $m \in \mathbb{N}$ such that $m\alpha \in \left[\frac{2\pi}{3}, \frac{4\pi}{5}\right] \mod 2\pi$. Call I the set of such m. For $m \in I$

$$a_1(m) = \xi^m + \frac{2}{\xi^{\frac{m}{2}}} \cos m\alpha$$

$$a_2(m) = -2\xi^{\frac{m}{2}} \cos m\alpha - \frac{1}{\xi^m} \ge -2\xi^{\frac{m}{2}} \cos \frac{2\pi}{3} - \frac{1}{\xi^m}$$

then

$$\lim_{m\to\infty, m\in I} a_1(m) = \lim_{m\to\infty, m\in I} a_2(m) = +\infty.$$

Moreover,

$$a_2(m) \le -2\xi^{\frac{m}{2}}\cos\frac{4\pi}{5} - \frac{1}{\xi^m}$$

then

$$\liminf_{m \to \infty, \ m \in I} \frac{a_1(m)}{a_2^2(m)} \ge \frac{1}{4\cos^2\frac{4\pi}{5}} > \frac{1}{3}.$$

Therefore the conditions i), ii) and iii) are satisfied for large m in I.

Second case. $\frac{\alpha}{2\pi} = \frac{p}{q} \in \mathbb{Q}$.

Since $\gamma \notin \mathbb{R}$, q > 2. First note that $q \neq 4$ for, if q = 4, we have

$$0 = \operatorname{Re}(\gamma^3 - a_1 \gamma^2 - a_2 \gamma - 1) = a_1 \rho^2 - 1 0 = \operatorname{Im}(\gamma^3 - a_1 \gamma^2 - a_2 \gamma - 1) = \pm \rho(\rho^2 + a_2)$$

so $a_1=-a_2=\rho=1$ and $\gamma=\pm i$. This is impossible because the degree of the minimal polynomial of γ is 3. So $q\in\{3\}\cup\{5,6,\dots\}$. If q=3,5 or 6, it is easy to see that there exist infinitely many $m\in\mathbb{N}$ such that $m\alpha\in\left[\frac{4\pi}{5}-\frac{2\pi}{7},\frac{4\pi}{5}\right]\mod 2\pi$ while a similar conclusion is obvious if $q\geq 7$. Now, we can conclude as in the previous case for $\frac{4\pi}{5}-\frac{2\pi}{7}>\frac{\pi}{2}$.

From now on, $a_1, a_2 \ge 1$ are two integers such that $P(x) = -1 + a_1x + a_2x^2 + x^3$ has a unique real root ζ . We use the notations of Sections 2 and 3, the norm N as defined in Section 2 and ρ_0 as defined at the beginning of Section 3.

Lemma 8.

$$\rho_0^2 \ge \frac{4a_1 - a_2^2 + 2a_2\zeta + 3\zeta^2}{2(a_1 + \zeta^2)}$$

Proof. By definition

$$ho_0^2 \ge \min(\min_{x \in \mathbb{R}} N^2(e_1 + xe_2), \min_{x \in \mathbb{R}} N^2(e_2 + xe_1)).$$

We have

$$N^{2}(e_{1}+xe_{2})=\langle e_{1},e_{1}\rangle+2x\langle e_{1},e_{2}\rangle+x^{2}\langle e_{2},e_{2}\rangle$$

then

$$\min_{x \in \mathbb{R}} N^2(e_1 + xe_2) = \langle e_1, e_1 \rangle - \frac{\langle e_1, e_2 \rangle^2}{\langle e_2, e_2 \rangle} = \frac{4(a_1 + \zeta^2) - (a_2 - \zeta)^2}{2}$$

similarly

$$\min_{x \in \mathbb{R}} N^2(e_2 + xe_1) = \langle e_2, e_2 \rangle - \frac{\langle e_1, e_2 \rangle^2}{\langle e_1, e_1 \rangle} = \frac{4(a_1 + \zeta^2) - (a_2 - \zeta)^2}{2(a_1 + \zeta^2)},$$

and since $a_1 \geq 1$,

$$\rho_0^2 \ge \frac{4a_1 - a_2^2 + 2a_2\zeta + 3\zeta^2}{2(a_1 + \zeta^2)}.$$

Lemma 9. Suppose a_1 and a_2 satisfy condition iii) of Lemma 7. For a_1 sufficiently large, $N(\theta) \leq \frac{1}{2}\rho_0$ and θ is a best approximation vector of θ .

Proof. Put
$$\phi(a_1, a_2) = \frac{4a_1 - a_2^2 + 2a_2\zeta + 3\zeta^2}{2(a_1 + \zeta^2)}$$
. We have
$$\lim_{a_1 \to \infty} \zeta(a_1, a_2) = 0$$

whereby

$$\lim_{\substack{a_1 o \infty \ 3a_1 > a_2^2}} \phi(a_1,a_2) \geq rac{1}{2}$$

and so

$$N^2(\theta) = N^2(F(e_2)) = 2\zeta < \frac{1}{4}\phi(a_1, a_2) \le \frac{1}{4}\rho_0^2$$

for a_1 sufficiently large. Now if $P \in \mathbb{Z}^2 \setminus \{(0,0)\}$, then $N(\theta - P) \geq N(P) - N(\theta) \geq \frac{1}{2}\rho_0$.

Lemma 10. If $q \in \{0, ..., a_1 - 1\}$ then $N(q\theta - e_1) > N(\theta)$.

Proof.

$$N^2(q\theta - e_1) > N^2(\theta)$$

$$\Leftrightarrow (q^{2} - 1)\langle \theta, \theta \rangle - 2q\langle \theta, e_{1} \rangle + \langle e_{1}, e_{1} \rangle > 0$$

$$\Leftrightarrow (q^{2} - 1)\langle F(e_{2}), F(e_{2}) \rangle - 2q[2(a_{1} + \zeta^{2})\zeta + (a_{2} - \zeta)\zeta^{2}] + 2(a_{1} + \zeta^{2}) > 0$$

$$\Leftrightarrow 2(q^{2} - 1)\zeta - 2q(a_{1}\zeta + 1) + 2(a_{1} + \zeta^{2}) > 0$$

$$\Leftrightarrow a_{1} - q + (q^{2} - 1 - a_{1}q)\zeta + \zeta^{2} > 0$$

$$\Leftrightarrow (a_{1} - q)(a_{1}\zeta + a_{2}\zeta^{2} + \zeta^{3}) + (q^{2} - 1 - a_{1}q)\zeta + \zeta^{2} > 0$$

$$\Leftrightarrow q^{2} + a_{1}^{2} - 2a_{1}q - 1 + a_{2}(a_{1} - q)\zeta + (a_{1} - q)\zeta^{2} > 0.$$

Lemma 11. Suppose a_1 and a_2 satisfy condition iii) of Lemma 7. For a_1 sufficiently large, θ and $a_1\theta - e_1$ are the first two best approximation vectors.

Proof. Since $a_1\theta - e_1 = F(\theta)$, the only thing to prove is

$$\inf_{q \in \{2,\dots,a_1-1\}} \inf_{P \in \mathbb{Z}^2} N(q\theta - P) > N(\theta).$$

If $N(q\theta - P) \leq \frac{1}{2}\rho_0$, then by definition of ρ_0

$$|q\zeta - p_1| \leq \frac{1}{2}$$

$$|q\zeta^2 - p_2| \leq \frac{1}{2}$$

where $P = (p_1, p_2)$. Furthermore, if $q < a_1$ and if a_1 is large, then $q\zeta \le 1$ and $q\zeta^2 \le \frac{1}{2}$. Therefore,

$$\inf_{P \in \mathbb{Z}^2} N(q\theta - P) = \inf(N(q\theta), N(q\theta - e_1))$$

$$\geq \inf(qN(\theta), N(q\theta - e_1)) > N(\theta)$$

for
$$q \in \{2, \ldots, a_1 - 1\}$$
.

End of proof of Proposition 2. By Lemma 7 there exists a unit $\lambda \in \mathbb{Q}(\alpha)$ which satisfies conditions i), ii) and iii) with a_1 large. $\zeta = \frac{1}{\lambda}$ is also unit. By Lemma 9, $\theta = (\zeta, \zeta^2)$ is a best approximation vector and by Lemma 11, $F(\theta) = a_1\theta - e_1$ is the next best approximation vector. Since $N(a_1\theta - e_1) < N(\theta) < \frac{1}{2}\rho_0$, by Proposition 6 we have $\mathcal{M}(\theta) = \{F^n(\theta) : n \in \mathbb{N}\}$.

5. The equations
$$1 = x^3 + a_2x^2 + x$$

The polynomial $P(x) = x^3 + a_2x^2 + x - 1$ has only one real root if $a_2 = 1$ or 2.

- **5.1.** $a_2 = 1$. Call ζ the positive root of $1 = x^3 + x^2 + x$ and $\theta = (\zeta, \zeta^2)$. N. Chekhova, P. Hubert, A. Messaoudi have proved that $\mathcal{M}(\theta) = \{F^n(\theta e_1) : n \in \mathbb{N}\}$. If we want to recover this result with Proposition 6, we just have to show:
- i) θe_1 is a best approximation vector,
- ii) $F(\theta e_1)$ is the next best approximation vector,
- iii) $N(F(\theta-e_1))<\frac{1}{2}\rho_0$.

First note that $F(\theta - e_1) = 2\theta - e_1 - e_2$ and $N(F(\theta - e_1)) = \zeta N(\theta - e_1) < N(\theta - e_1)$, so if i) is true then 2 is the next best approximation and if iii) is also true, then $2\theta - e_1 - e_2$ is a best approximation vector. Let us now prove iii) and afterward i):

$$N^2(F(\theta - e_1)) = N^2(F^3(e_2)) = 2\zeta^3 < \frac{3 + 2\zeta + 3\zeta^2}{8(1 + \zeta^2)} \le \frac{1}{4}\rho_0^2$$

for

$$2\zeta^{3} < \frac{3+2\zeta+3\zeta^{2}}{8(1+\zeta^{2})}$$

$$\Leftrightarrow 3+2\zeta+3\zeta^{2}-16\zeta^{3}(1+\zeta^{2})>0$$

$$\Leftrightarrow 3(\zeta+\zeta^{2}+\zeta^{3})+2\zeta+3\zeta^{2}-16\zeta^{3}(1+\zeta^{2})>0$$

$$\Leftrightarrow 5+6\zeta-13\zeta^{2}-16\zeta^{4}>0$$

$$\Leftrightarrow 11-8\zeta+5\zeta^{2}-16\zeta^{3}>0$$

$$\Leftrightarrow 3+16\zeta-5\zeta^{2}>0$$

and the last inequality is obvious. Since $\zeta > \frac{1}{2}$, $2\zeta^3 < \frac{1}{4}\rho_0^2 \Rightarrow N^2(\theta - e_1) = 2\zeta^2 < \frac{1}{2}\rho_0^2 \leq \rho_0^2$. Then the point $P = (p_1, p_2) \in \mathbb{Z}^2$ which is the nearest to θ , is one of (0,0), e_1 , e_2 or $e_1 + e_2$. We have

$$N^2(\theta - e_1) = \zeta N^2(\theta) < N^2(\theta)$$

and

$$\begin{split} N^2(\theta - e_2) &= N^2(\theta) - 2\langle \theta, e_2 \rangle + 2 = 2\zeta - 2\zeta(1 - \zeta) - 4\zeta^2 + 2 \\ &= 2(1 - \zeta^2) > 2\zeta^2 = N(\theta - e_1), \\ N^2(\theta - e_1 - e_2) &= N^2(\theta - e_1) - 2\langle \theta - e_1, e_2 \rangle + 2 \\ &= 2\zeta^2 - 2\zeta(1 - \zeta) - 4\zeta^2 + 2\langle e_1, e_2 \rangle + 2 \\ &= \zeta^2 - 2\zeta(1 - \zeta) - 4\zeta^2 + 2(1 - \zeta) + 2 = 4 - 4\zeta > 2\zeta^2, \end{split}$$

so P must be e_1 and this completes the proof of i).

5.2. $a_2 = 2$. Call ζ the positive root of $1 = x^3 + 2x^2 + x$ and $\theta = (\zeta, \zeta^2)$. The set of all best approximations is given by two initial points

$$\mathcal{M}(\theta) = \{B^n X_i : n \in \mathbb{N}, i = 1, 2\}$$

where $X_1 = \theta$ and $X_2 = 2\theta - e_1$. To prove this result, by Proposition 6, we have to check the following properties:

- i) θe_1 is the best approximation vector,
- ii) $2\theta e_1$ is the next best approximation vector,
- iii) $F(\theta e_1) = 3\theta e_1$, $F(2\theta e_1) = 4\theta 2e_1 e_2$,
- iv) $N(3\theta e_1) < \frac{1}{2}\rho_0$.

This requires some tedious calculations very similar to the case $a_2 = 1$.

References

- W. W. Adams, Simultaneous diophantine Approximations and Cubic Irrationals. Pacific J. Math. 30 (1969), 1-14.
- [2] W. W. Adams, Simultaneous Asymptotic diophantine Approximations to a Basis of a Real Cubic Field. J. Number Theory 1 (1969), 179-194.
- [3] P. BACHMANN, Zur Theory von Jacobi's Kettenbruch-Algorithmen, J. Reine Angew. Math. 75 (1873), 25-34.

- [4] L. BERNSTEIN, The Jacobi-Perron algorithm-Its theory and applications, Lectures Notes in Mathematics 207, Springer-Verlag, 1971.
- [5] A. J. Brentjes, Multi-dimensional continued fraction algorithms, Mathematics Center Tracts 155, Amsterdam, 1982.
- [6] J. W. S. CASSELS, An introduction to diophantine approximation. Cambridge University Press, 1965.
- [7] N. CHEKHOVA, P. HUBERT, A. MESSAOUDI, Propriété combinatoires, ergodiques et arithmétiques de la substitution de Tribonacci. J. Théor. Nombres Bordeaux 13 (2001), 371-394.
- [8] N. CHEVALLIER, Meilleures approximations d'un élément du tore T² et géométrie de cet élément. Acta Arith. 78 (1996), 19-35.
- [9] E. DUBOIS, R. PAYSANT-LE ROUX, Algorithme de Jacobi-Perron dans les extensions cubiques. C. R. Acad. Sci. Paris Sér. A 280 (1975), 183-186.
- [10] J. C. LAGARIAS, Some New results in simultaneous diophantine approximation. In Proc. of Queen's Number Theory Conference 1979 (P. Ribenboim, Ed.), Queen's Papers in Pure and Applied Math. No. 54 (1980), 453-574.
- [11] J. C. LAGARIAS, Best simultaneous diophantine approximation I. Growth rates of best approximations denominators. Trans. Amer. Math. Soc. 272 (1982), 545-554.
- [12] H. MINKOWSKI, Über periodish Approximationen Algebraischer Zalhen. Acta Math. 26 (1902), 333-351.
- [13] O. PERRON, Grundlagen für eine Theorie des Jacobischen Kettenalgorithmus. Math. Ann. 64 (1907), 1-76.
- [14] G. RAUZY, Nombre algébrique et substitution. Bull. Soc. Math. France 110 (1982), 147-178.

Nicolas CHEVALLIER
Université de Haute-Alsace
4, rue des frères Lumière
68093 Mulhouse Cedex, France
E-mail: n.chevallier@uha.fr