The diophantine equation ax 2 +bxy+cy 2 =N, D=b 2 -4ac>0
Journal de théorie des nombres de Bordeaux, Volume 14 (2002) no. 1, pp. 257-270.

We make more accessible a neglected simple continued fraction based algorithm due to Lagrange, for deciding the solubility of ax 2 +bxy+cy 2 =N in relatively prime integers x,y, where N0, gcd(a,b,c)=gcd(a,N)=1etD=b 2 -4ac>0 is not a perfect square. In the case of solubility, solutions with least positive y, from each equivalence class, are also constructed. Our paper is a generalisation of an earlier paper by the author on the equation x 2 -Dy 2 =N. As in that paper, we use a lemma on unimodular matrices that gives a much simpler proof than Lagrange’s for the necessity of the existence of a solution. Lagrange did not discuss an exceptional case which can arise when D=5. This was done by M. Pavone in 1986, when N=±μ, where μ=min (x,y)(0,0) ax 2 +bxy+cy 2 . We only need the special case μ=1 of his result and give a self-contained proof, using our unimodular matrix approach.

Nous revisitons un algorithme dû à Lagrange, basé sur le développement en fraction continue, pour résoudre l’équation ax 2 +bxy+cy 2 =N en les entiers x,y premiers entre eux, où N0, pgcd(a,b,c)=pgcd(a,N)=1etD=b 2 -4ac>0 n’est pas un carré.

@article{JTNB_2002__14_1_257_0,
     author = {Keith Matthews},
     title = {The diophantine equation $ax^2+bxy+cy^2=N$, $D=b^2-4ac>0$},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {257--270},
     publisher = {Universit\'e Bordeaux I},
     volume = {14},
     number = {1},
     year = {2002},
     zbl = {1018.11013},
     mrnumber = {1926002},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/item/JTNB_2002__14_1_257_0/}
}
TY  - JOUR
AU  - Keith Matthews
TI  - The diophantine equation $ax^2+bxy+cy^2=N$, $D=b^2-4ac>0$
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2002
DA  - 2002///
SP  - 257
EP  - 270
VL  - 14
IS  - 1
PB  - Université Bordeaux I
UR  - https://jtnb.centre-mersenne.org/item/JTNB_2002__14_1_257_0/
UR  - https://zbmath.org/?q=an%3A1018.11013
UR  - https://www.ams.org/mathscinet-getitem?mr=1926002
LA  - en
ID  - JTNB_2002__14_1_257_0
ER  - 
%0 Journal Article
%A Keith Matthews
%T The diophantine equation $ax^2+bxy+cy^2=N$, $D=b^2-4ac>0$
%J Journal de théorie des nombres de Bordeaux
%D 2002
%P 257-270
%V 14
%N 1
%I Université Bordeaux I
%G en
%F JTNB_2002__14_1_257_0
Keith Matthews. The diophantine equation $ax^2+bxy+cy^2=N$, $D=b^2-4ac>0$. Journal de théorie des nombres de Bordeaux, Volume 14 (2002) no. 1, pp. 257-270. https://jtnb.centre-mersenne.org/item/JTNB_2002__14_1_257_0/

[1] G. Cornacchia, Su di un metodo per la risoluxione in numeri interi dell' equazione h = 0 n C h x n - h = P . Giornale di Matematiche di Battaglini 46 (1908), 33-90. | JFM

[2] A. Faisant, L 'equation diophantienne du second degré. Hermann, Paris, 1991. | MR | Zbl

[3] C.F. Gauss, Disquisitiones Arithmeticae. Yale University Press, New Haven, 1966. | MR | Zbl

[4] G.H. Hardy, E.M. Wright, An Introduction to Theory of Numbers, Oxford University Press, 1962. | MR

[5] L.K. Hua, Introduction to Number Theory. Springer, Berlin, 1982. | MR | Zbl

[6] G.B. Mathews, Theory of numbers, 2nd ed. Chelsea Publishing Co., New York, 1961. | JFM | MR

[7] K.R. Matthews, The Diophantine equation x2 - Dy2 = N, D > 0. Exposition. Math. 18 (2000), 323-331. | MR | Zbl

[8] R.A. Mollin, Fundamental Number Theory with Applications. CRC Press, New York, 1998. | Zbl

[9] A. Nitaj, Conséquences et aspects expérimentaux des conjectures abc et de Szpiro. Thèse, Caen, 1994.

[10] M. Pavone, A Remark on a Theorem of Serret. J. Number Theory 23 (1986), 268-278. | MR | Zbl

[11] J. A. SERRET (Ed.), Oeuvres de Lagrange, I-XIV, Gauthiers-Villars, Paris, 1877.

[12] J.A. Serret, Cours d'algèbre supérieure, Vol. I, 4th ed. Gauthiers-Villars, Paris, 1877. | JFM

[13] T. Skolem, Diophantische Gleichungen, Chelsea Publishing Co., New York, 1950.