On extremal additive 𝔽 4 codes of length 10 to 18
;
Journal de Théorie des Nombres de Bordeaux, Volume 12 (2000) no. 2, pp. 255-271.

In this paper we consider the extremal even self-dual 𝔽 4 -additive codes. We give a complete classification for length 10. Under the hypothesis that at least two minimal words have the same support, we classify the codes of length 14 and we show that in length 18 such a code is equivalent to the unique 𝔽 4 -hermitian code with parameters [18,9,8]. We construct with the help of them some extremal 3-modular lattices.

Dans cet article nous considérons les codes 𝔽 4 -additifs autoduaux pairs et extrémaux. Nous en donnons une classification complète en longueur 10. Avec l’hypothèse qu’au moins deux mots de poids minimal ont le même support, nous classifions les codes de longueur 14, et montrons en longueur 18 qu’un tel code est équivalent à l’unique code 𝔽 4 -linéaire hermitien autodual de paramètres [18,9,8].

@article{JTNB_2000__12_2_255_0,
     author = {Bachoc, Christine and Gaborit, Philippe},
     title = {On extremal additive $\mathbb {F}\_4$ codes of length $10$ to $18$},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     publisher = {Universit\'e Bordeaux I},
     volume = {12},
     number = {2},
     year = {2000},
     pages = {255-271},
     zbl = {1007.94027},
     mrnumber = {1823184},
     language = {en},
     url={jtnb.centre-mersenne.org/item/JTNB_2000__12_2_255_0/}
}
Bachoc, Christine; Gaborit, Philippe. On extremal additive $\mathbb {F}_4$ codes of length $10$ to $18$. Journal de Théorie des Nombres de Bordeaux, Volume 12 (2000) no. 2, pp. 255-271. https://jtnb.centre-mersenne.org/item/JTNB_2000__12_2_255_0/

[1] C. Bachoc, Harmonic weight enumemtors of nonbinary codes and Mac Williams identities. Preprint (1999).

[2] A. Bonisoli, Every equidistant linear code is a sequence of dual hamming codes. Ars Comb. 18 (1983), 181-186. | MR 823843 | Zbl 0561.94006

[3] W. Bosma, J. Cannon, Handbook of Magma functions. Sydney (1995).

[4] A.R. Calderbank, E.M. Rains, P.W. Shor, N.J.A. Sloane, Quantum error correction via codes over GF(4). IEEE Trans. Inform. Theory IT-44 (1998), 1369-1387. | MR 1665774 | Zbl 0982.94029

[5] J. Conway, N.J.A. Sloane, Sphere packings, Lattices and Groups. Springer-Verlag (1988). | MR 920369 | Zbl 0634.52002

[6] P. Gaborit, W.C. Huffman, J.-L. Kim, V. Pless, On the classification of extremal additive codes over GF(4). to appear in: Proceedings of the 37th Allerton Conference on Communication, Control, and Computing (1999), UIUC.

[7] G. Höhn, Self-dual codes over the Kleinian four group. Preprint (1996). | MR 2015068

[8] W.C. Huffman, On extremal self-dual quaternary codes of lengths 18 to 28. IEEE Trans. Inform. Theory 36 (1990), 651-660. | MR 1053859 | Zbl 0703.94013

[9] F.J. Macwilliams, A.M. Odlyzko, N.J.A. Sloane, H.N. Ward, Self-Dual Codes over GF(4). J. Comb. Theory 25 (1978), 288-318. | MR 514624 | Zbl 0397.94013

[10] G. Nebe, Finite subgroups of GL(24, Q). Exp. Math. 5 (1996), 2341-2397. | MR 1390378 | Zbl 0856.20031

[11] H.-G. Quebbemann, Modular Lattices in Euclidean Spaces. J. Number Theory 54 (1995), 190-202. | MR 1354045 | Zbl 0874.11038

[12] E.M. Rains, N.J.A. Sloane, Self-dual codes. In: Handbook of Coding Theory, ed. V. S. Pless and W. C. Huffman. Amsterdam: Elsevier, 1998, pp. 177-294. | MR 1667939 | Zbl 0936.94017

[13] R. Scharlau, R. Schulze-Pillot, Extremal Lattices, Algorithmic Algebra and Number Theory (Heidelberg 1997), 139-170, Springer, Berlin, 1999. | MR 1672117 | Zbl 0944.11012