Herein we introduce the palindromic index as a device for studying ambiguous cycles of reduced ideals with no ambiguous ideal in the cycle.
Keywords: quadratic order, class number, palindromic index, ambiguous cycle, continued fractions, reduced ideals
@article{JTNB_1995__7_2_447_0, author = {Richard A. Mollin}, title = {The palindromic index - {A} measure of ambiguous cycles of reduced ideals without any ambiguous ideals in real quadratic orders}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {447--460}, publisher = {Universit\'e Bordeaux I}, volume = {7}, number = {2}, year = {1995}, zbl = {0855.11054}, mrnumber = {1378590}, language = {en}, url = {https://jtnb.centre-mersenne.org/item/JTNB_1995__7_2_447_0/} }
TY - JOUR AU - Richard A. Mollin TI - The palindromic index - A measure of ambiguous cycles of reduced ideals without any ambiguous ideals in real quadratic orders JO - Journal de théorie des nombres de Bordeaux PY - 1995 SP - 447 EP - 460 VL - 7 IS - 2 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_1995__7_2_447_0/ LA - en ID - JTNB_1995__7_2_447_0 ER -
%0 Journal Article %A Richard A. Mollin %T The palindromic index - A measure of ambiguous cycles of reduced ideals without any ambiguous ideals in real quadratic orders %J Journal de théorie des nombres de Bordeaux %D 1995 %P 447-460 %V 7 %N 2 %I Université Bordeaux I %U https://jtnb.centre-mersenne.org/item/JTNB_1995__7_2_447_0/ %G en %F JTNB_1995__7_2_447_0
Richard A. Mollin. The palindromic index - A measure of ambiguous cycles of reduced ideals without any ambiguous ideals in real quadratic orders. Journal de théorie des nombres de Bordeaux, Volume 7 (1995) no. 2, pp. 447-460. https://jtnb.centre-mersenne.org/item/JTNB_1995__7_2_447_0/
[1] A second course in number theory, John Wiley and Sons Inc., New York/London (1962). | MR | Zbl
,[2] A course in computational algebraic number theory, Springer-Verlag, Berlin, Graduate Texts in Mathematics 138, (1993). | MR | Zbl
,[3] Prime-producing quadratic polynomials and class numbers of quadratic orders in Computational Number Theory, (A. Pethô, M. Pohst, H.C. Williams, and H.G. Zimmer eds.) Walter de Gruyter, Berlin (1991), 73-82. | MR | Zbl
,[4] Infrastructure des Classes Ambiges D'Idéaux des ordres des corps quadratiques réels, L'Enseignement Math 37 (1991), 263-292. | MR | Zbl
, , and ,[5] The distance between ideals in the orders of real quadratic fields, L'Enseignment Math. 36 (1990), 321-358. | MR | Zbl
and ,[6] Groupes des classes d'ideaux triviaux, Acta. Arith. LIV (1989), 61-74. | MR | Zbl
,[7] Class numbers of real quadratic fields, continued fractions, raeduced ideals, prime-producing quadratic polynomials, and quadratic residue covers, Can. J. Math. 44 (1992), 824-842. | MR | Zbl
, and ,[8] Ambiguous Classes in Real Quadratic Fields, Math Comp. 61 (1993), 355-360. | MR | Zbl
,[9] Classification and enumeration of real quadratic fields having exactly one non-inert prime less than a Minkowski bound, Can. Math. Bull. 36 (1993), 108-115. | MR | Zbl
and ,[10] On the parallel generation of the residues for the continued fraction factoring algorithm, Math. Comp. 77 (1987), 405-423. | MR | Zbl
and ,