@article{JTNB_1993__5_1_123_0, author = {D. Crisp and W. Moran and A. Pollington and P. Shiue}, title = {Substitution invariant cutting sequences}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {123--137}, publisher = {Universit\'e Bordeaux I}, volume = {5}, number = {1}, year = {1993}, zbl = {0786.11041}, mrnumber = {1251232}, language = {en}, url = {https://jtnb.centre-mersenne.org/item/JTNB_1993__5_1_123_0/} }
TY - JOUR AU - D. Crisp AU - W. Moran AU - A. Pollington AU - P. Shiue TI - Substitution invariant cutting sequences JO - Journal de théorie des nombres de Bordeaux PY - 1993 SP - 123 EP - 137 VL - 5 IS - 1 PB - Université Bordeaux I UR - https://jtnb.centre-mersenne.org/item/JTNB_1993__5_1_123_0/ LA - en ID - JTNB_1993__5_1_123_0 ER -
%0 Journal Article %A D. Crisp %A W. Moran %A A. Pollington %A P. Shiue %T Substitution invariant cutting sequences %J Journal de théorie des nombres de Bordeaux %D 1993 %P 123-137 %V 5 %N 1 %I Université Bordeaux I %U https://jtnb.centre-mersenne.org/item/JTNB_1993__5_1_123_0/ %G en %F JTNB_1993__5_1_123_0
D. Crisp; W. Moran; A. Pollington; P. Shiue. Substitution invariant cutting sequences. Journal de théorie des nombres de Bordeaux, Volume 5 (1993) no. 1, pp. 123-137. https://jtnb.centre-mersenne.org/item/JTNB_1993__5_1_123_0/
[1] A characterisation of the quadratic irrationals, Canad. Math. Bull. 34 (1991), 36-41. | MR | Zbl
,[2] Some direct limits of primitive homotopy words and of Markoff geodesics, Discontinuous groups and Riemann surfaces, Ann. of Math. Studies No. 79, Princeton Univ. Press, Princeton, N.J., (1974), 81-98. | MR | Zbl
,[3] Determination of [nθ] by its sequence of differences, Canad. Math. Bull. 21 (1978), 441-446. | Zbl
,[4] On continued fractions, substitutions and characteristic sequences [nx + y] - [(n - 1)x + y], Japan J. Math. 16 (1990), 287-306. | MR | Zbl
and ,[5] The geometry of Markoff numbers, Math. Intelligencer 7 (1985), 20-29. | MR | Zbl
,[6] Beatty sequences, continued fractions, and certain shift operators, Canad. Math. Bull. 19 (1976), 473-482. | MR | Zbl
,