Realizable Classes and Embedding Problems
Journal de Théorie des Nombres de Bordeaux, Tome 29 (2017) no. 2, pp. 647-680.

Soit K un corps de nombres et soit 𝒪 K son anneau des entiers. Soit G un groupe fini et soit K h une K-algèbre galoisienne de groupe G. Si K h /K est modérée, son anneau des entiers 𝒪 h est un 𝒪 K G-module localement libre d’après un théorème classique d’E. Noether et définit une classe dans le groupe des classes Cl(𝒪 K G) des 𝒪 K G-modules localement libres. On note R(𝒪 K G) l’ensemble de toutes ces classes. En combinant les travaux de L.R. McCulloh et J. Brinkhuis, on prouve que la structure de R(𝒪 K G) est liée à l’étude de problèmes de plongement lorsque G est abélien.

Let K be a number field and denote by 𝒪 K its ring of integers. Let G be a finite group and let K h be a Galois K-algebra with group G. If K h /K is tame, then its ring of integers 𝒪 h is a locally free 𝒪 K G-module by a classical theorem of E. Noether and it defines a class in the locally free class group Cl(𝒪 K G) of 𝒪 K G. We denote by R(𝒪 K G) the set of all such classes. By combining the work of L.R. McCulloh and J. Brinkhuis, we shall prove that the structure of R(𝒪 K G) is connected to the study of embedding problems when G is abelian.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/jtnb.995
Classification : 11R04,  11R32,  11R33
Mots clés : Galois module, rings of integers, realizable classes, embedding problems
@article{JTNB_2017__29_2_647_0,
     author = {Cindy (Sin Yi) Tsang},
     title = {Realizable {Classes} and {Embedding} {Problems}},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {647--680},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {29},
     number = {2},
     year = {2017},
     doi = {10.5802/jtnb.995},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.995/}
}
Cindy (Sin Yi) Tsang. Realizable Classes and Embedding Problems. Journal de Théorie des Nombres de Bordeaux, Tome 29 (2017) no. 2, pp. 647-680. doi : 10.5802/jtnb.995. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.995/

[1] Jan Brinkhuis Normal integral bases and embedding problems, Math. Ann., Volume 264 (1983), pp. 537-543 | Article

[2] Jan Brinkhuis Galois modules and embedding problems, J. Reine Angew. Math., Volume 346 (1984), pp. 141-165

[3] Charles W. Curtis; Irving Reiner Methods of representation theory with applications to finite groups and orders. Vol. I, Pure and Applied Mathematics, John Wiley & Sons, 1981, xxi+819 pages

[4] Charles W. Curtis; Irving Reiner Methods of representation theory with applications to finite groups and orders. Vol. II, Pure and Applied Mathematics, John Wiley & Sons, 1987, xv+951 pages

[5] Boas Erez The Galois structure of the square root of the inverse different, Math. Z., Volume 208 (1991) no. 2, pp. 239-255 | Article

[6] Albrecht Fröhlich Local fields, Algebraic number theory, Academic Press, 1967

[7] Leon R. McCulloh Galois module structure of abelian extensions, J. Reine Angew. Math., Volume 375/376 (1987), pp. 259-306

[8] Jürgen Neukirch; Alexander Schmidt; Kay Wingberg Cohomology of Number Fields, Grundlehren der Mathematischen Wissenschaften, Volume 323, Springer, 2008, xv+825 pages

[9] Jean-Pierre Serre Local fields, Graduate Texts in Mathematics, Volume 67, Springer, 1979, viii+241 pages

[10] Cindy Tsang On the Galois module structure of the square root of the inverse different in abelian extensions, J. Number Theory, Volume 160 (2016), pp. 759-804 | Article

[11] Cindy Tsang On the Galois module structure of the square root of the inverse different in abelian extensions (2016) (Ph. D. Thesis)

[12] Stephen V. Ullom Integral normal bases in Galois extensions of local fields, Nagoya Math. J., Volume 39 (1970), pp. 141-148 | Article