Let be a number field and denote by its ring of integers. Let be a finite group and let be a Galois -algebra with group . If is tame, then its ring of integers is a locally free -module by a classical theorem of E. Noether and it defines a class in the locally free class group of . We denote by the set of all such classes. By combining the work of L.R. McCulloh and J. Brinkhuis, we shall prove that the structure of is connected to the study of embedding problems when is abelian.
Soit un corps de nombres et soit son anneau des entiers. Soit un groupe fini et soit une -algèbre galoisienne de groupe . Si est modérée, son anneau des entiers est un -module localement libre d’après un théorème classique d’E. Noether et définit une classe dans le groupe des classes des -modules localement libres. On note l’ensemble de toutes ces classes. En combinant les travaux de L.R. McCulloh et J. Brinkhuis, on prouve que la structure de est liée à l’étude de problèmes de plongement lorsque est abélien.
Revised:
Accepted:
Published online:
Keywords: Galois module, rings of integers, realizable classes, embedding problems
Cindy (Sin Yi) Tsang 1

@article{JTNB_2017__29_2_647_0, author = {Cindy (Sin Yi) Tsang}, title = {Realizable {Classes} and {Embedding} {Problems}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {647--680}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {29}, number = {2}, year = {2017}, doi = {10.5802/jtnb.995}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.995/} }
TY - JOUR AU - Cindy (Sin Yi) Tsang TI - Realizable Classes and Embedding Problems JO - Journal de théorie des nombres de Bordeaux PY - 2017 SP - 647 EP - 680 VL - 29 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.995/ DO - 10.5802/jtnb.995 LA - en ID - JTNB_2017__29_2_647_0 ER -
%0 Journal Article %A Cindy (Sin Yi) Tsang %T Realizable Classes and Embedding Problems %J Journal de théorie des nombres de Bordeaux %D 2017 %P 647-680 %V 29 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.995/ %R 10.5802/jtnb.995 %G en %F JTNB_2017__29_2_647_0
Cindy (Sin Yi) Tsang. Realizable Classes and Embedding Problems. Journal de théorie des nombres de Bordeaux, Volume 29 (2017) no. 2, pp. 647-680. doi : 10.5802/jtnb.995. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.995/
[1] Normal integral bases and embedding problems, Math. Ann., Volume 264 (1983), pp. 537-543 | DOI
[2] Galois modules and embedding problems, J. Reine Angew. Math., Volume 346 (1984), pp. 141-165
[3] Methods of representation theory with applications to finite groups and orders. Vol. I, Pure and Applied Mathematics, John Wiley & Sons, 1981, xxi+819 pages
[4] Methods of representation theory with applications to finite groups and orders. Vol. II, Pure and Applied Mathematics, John Wiley & Sons, 1987, xv+951 pages
[5] The Galois structure of the square root of the inverse different, Math. Z., Volume 208 (1991) no. 2, pp. 239-255 | DOI
[6] Local fields, Algebraic number theory, Academic Press, 1967
[7] Galois module structure of abelian extensions, J. Reine Angew. Math., Volume 375/376 (1987), pp. 259-306
[8] Cohomology of Number Fields, Grundlehren der Mathematischen Wissenschaften, 323, Springer, 2008, xv+825 pages
[9] Local fields, Graduate Texts in Mathematics, 67, Springer, 1979, viii+241 pages
[10] On the Galois module structure of the square root of the inverse different in abelian extensions, J. Number Theory, Volume 160 (2016), pp. 759-804 | DOI
[11] On the Galois module structure of the square root of the inverse different in abelian extensions, University of California (USA) (2016) (Ph. D. Thesis)
[12] Integral normal bases in Galois extensions of local fields, Nagoya Math. J., Volume 39 (1970), pp. 141-148 | DOI
Cited by Sources: