[-Bernoulli–Carlitz Numbers and continuous fractions]
Carlitz introduced -analogues of the Bernoulli numbers around 1950. We obtain a representation of these -Bernoulli numbers (and some shifted version) as moments of some orthogonal polynomials. This also gives factorisations of Hankel determinants of -Bernoulli numbers, and continued fractions for their generating series. Some of these results are -analogues of known results for Bernoulli numbers, but some are specific to the -Bernoulli setting.
Carlitz a introduit vers 1950 des -analogues des nombres de Bernoulli. On obtient une représentation de ces -analogues (ainsi que de variantes décalées) comme moments de certains polynômes orthogonaux. Ceci donne aussi des factorisations des déterminants de Hankel des nombres de -Bernoulli, ainsi que des fractions continues pour leurs séries génératrices. Certains de ces résultats sont des -analogues d’énoncés connus pour les nombres de Bernoulli, mais d’autres sont sans version classique.
Revised:
Accepted:
Published online:
Keywords: Nombre de Bernoulli, q-analogue, déterminant de Hankel, polynômes orthogonaux, fraction continue
Frédéric Chapoton 1; Jiang Zeng 2

@article{JTNB_2017__29_2_347_0, author = {Fr\'ed\'eric Chapoton and Jiang Zeng}, title = {Nombres de $q${-Bernoulli{\textendash}Carlitz} et fractions continues}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {347--368}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {29}, number = {2}, year = {2017}, doi = {10.5802/jtnb.984}, language = {fr}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.984/} }
TY - JOUR AU - Frédéric Chapoton AU - Jiang Zeng TI - Nombres de $q$-Bernoulli–Carlitz et fractions continues JO - Journal de théorie des nombres de Bordeaux PY - 2017 SP - 347 EP - 368 VL - 29 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.984/ DO - 10.5802/jtnb.984 LA - fr ID - JTNB_2017__29_2_347_0 ER -
%0 Journal Article %A Frédéric Chapoton %A Jiang Zeng %T Nombres de $q$-Bernoulli–Carlitz et fractions continues %J Journal de théorie des nombres de Bordeaux %D 2017 %P 347-368 %V 29 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.984/ %R 10.5802/jtnb.984 %G fr %F JTNB_2017__29_2_347_0
Frédéric Chapoton; Jiang Zeng. Nombres de $q$-Bernoulli–Carlitz et fractions continues. Journal de théorie des nombres de Bordeaux, Volume 29 (2017) no. 2, pp. 347-368. doi : 10.5802/jtnb.984. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.984/
[1] Some determinants of Bernoulli, Euler and related numbers, Portugal. Math., Volume 18 (1959), pp. 91-99
[2] Some -orthogonal polynomials and related Hankel determinants, Rocky Mountain J. Math., Volume 32 (2002) no. 2, pp. 429-442 Conference on Special Functions (Tempe, AZ, 2000) | DOI
[3] Bernoulli numbers and zeta functions, Springer Monographs in Mathematics, Springer, Tokyo, 2014, xii+274 pages (With an appendix by Don Zagier) | DOI
[4] -Bernoulli numbers and polynomials, Duke Math. J., Volume 15 (1948), pp. 987-1000 | DOI
[5] Bernoulli and Euler numbers and orthogonal polynomials, Duke Math. J, Volume 26 (1959), pp. 1-15 | DOI
[6] A rooted-trees -series lifting a one-parameter family of Lie idempotents, Algebra Number Theory, Volume 3 (2009) no. 6, pp. 611-636 | DOI
[7] Fractions de Bernoulli-Carlitz et opérateurs -zeta, J. Théor. Nombres Bordeaux, Volume 22 (2010) no. 3, pp. 575-581 http://jtnb.cedram.org.docelec.univ-lyon1.fr/item?id=JTNB_2010__22_3_575_0 | DOI
[8] -Ehrhart polynomials of Gorenstein polytopes, Bernoulli umbra and related Dirichlet series, Moscow Journal of Combinatorics and Number Theory, Volume 5 (2015) no. 4 (http://arxiv.org/abs/1408.1329)
[9] A summation on Bernoulli numbers, J. Number Theory, Volume 111 (2005) no. 2, pp. 372-391 | DOI
[10] An introduction to orthogonal polynomials, Gordon and Breach Science Publishers, New York-London-Paris, 1978, xii+249 pages (Mathematics and its Applications, Vol. 13)
[11] Further triangles of Seidel-Arnold type and continued fractions related to Euler and Springer numbers, Adv. in Appl. Math., Volume 16 (1995) no. 3, pp. 275-296 | DOI
[12] The Hankel power sum matrix inverse and the Bernoulli continued fraction, Math. Comp., Volume 33 (1979) no. 146, pp. 815-826 | DOI
[13] The number of rhombus tilings of a symmetric hexagon which contain a fixed rhombus on the symmetry axis. II, European J. Combin., Volume 21 (2000) no. 5, pp. 601-640 | DOI
[14] Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 35, Cambridge University Press, Cambridge, 1990, xx+287 pages (With a foreword by Richard Askey)
[15] Hypergeometric orthogonal polynomials and their -analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010, xx+578 pages (With a foreword by Tom H. Koornwinder) | DOI
[16] On Jacobi and continuous Hahn polynomials, Proc. Amer. Math. Soc., Volume 124 (1996) no. 3, pp. 887-898 (preprint arxiv :math/9409230) | DOI
[17] Advanced determinant calculus, Sém. Lothar. Combin., Volume 42 (1999), Art. B42q, 67 pp. (electronic) pages The Andrews Festschrift (Maratea, 1998)
[18] Advanced determinant calculus : a complement, Linear Algebra Appl., Volume 411 (2005), pp. 68-166 | DOI
[19] On the Representation of Certain Asymptotic Series as Convergent Continued Fractions, Proc. London Math. Soc., Volume S2-4 (1905) no. 1, 72 pages | DOI
[20] Recherches sur les fractions continues [Suite et fin], Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys., Volume 9 (1895) no. 1, p. A5-A47
[21] Nombres exponentiels et nombres de Bernoulli, Canad. J. Math., Volume 8 (1956), pp. 305-320 | DOI
Cited by Sources: