We estimate the average number of residue classes missed by the sequence for
On s’intéresse à l’estimation du nombre de valeurs prises par la suite . Principalement, on obtient en moyenne sur les nombres premiers , une minoration du nombre de classes modulo évitées par la suite .
Revised:
Accepted:
Published online:
Keywords: Distribution of sequences mod $p$, polynomials, density results.
Oleksiy Klurman 1; Marc Munsch 2

@article{JTNB_2017__29_1_169_0, author = {Oleksiy Klurman and Marc Munsch}, title = {Distribution of factorials modulo $p$}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {169--177}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {29}, number = {1}, year = {2017}, doi = {10.5802/jtnb.974}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.974/} }
TY - JOUR AU - Oleksiy Klurman AU - Marc Munsch TI - Distribution of factorials modulo $p$ JO - Journal de théorie des nombres de Bordeaux PY - 2017 SP - 169 EP - 177 VL - 29 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.974/ DO - 10.5802/jtnb.974 LA - en ID - JTNB_2017__29_1_169_0 ER -
%0 Journal Article %A Oleksiy Klurman %A Marc Munsch %T Distribution of factorials modulo $p$ %J Journal de théorie des nombres de Bordeaux %D 2017 %P 169-177 %V 29 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.974/ %R 10.5802/jtnb.974 %G en %F JTNB_2017__29_1_169_0
Oleksiy Klurman; Marc Munsch. Distribution of factorials modulo $p$. Journal de théorie des nombres de Bordeaux, Volume 29 (2017) no. 1, pp. 169-177. doi : 10.5802/jtnb.974. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.974/
[1] On the value set of modulo prime, Turkish J. Math., Volume 29 (2005) no. 2, pp. 169-174
[2] On the missing values of , J. Ramanujan Math. Soc., Volume 24 (2009) no. 3, pp. 277-284
[3] On the number of fixed point free elements in a permutation group, Discrete Math., Volume 106/107 (1992), pp. 135-138 (A collection of contributions in honour of Jack van Lint) | DOI
[4] The sequence , J. Ramanujan Math. Soc., Volume 15 (2000) no. 2, pp. 135-154
[5] A note on modulo (To appear in Monatschefte für Mathematic, http://arxiv.org/abs/1505.05912)
[6] Character sums and products of factorials modulo , J. Théor. Nombres Bordeaux, Volume 17 (2005) no. 1, pp. 151-160 | DOI
[7] Character sums and congruences with , Trans. Amer. Math. Soc., Volume 356 (2004) no. 12, p. 5089-5102 (electronic) | DOI
[8] Exponential sums and congruences with factorials, J. Reine Angew. Math., Volume 584 (2005), pp. 29-44 | DOI
[9] Unsolved problems in number theory, Unsolved Problems in Intuitive Mathematics, 1, Springer-Verlag, New York-Berlin, 1981, xviii+161 pages
[10] Analytic number theory, American Mathematical Society Colloquium Publications, 53, American Mathematical Society, 2004, xi+615 pages
[11] Distribution of factorials modulo (Preprint, http://arxiv.org/abs/1505.01198)
[12] A bound for the least prime ideal in the Chebotarev density theorem, Invent. Math., Volume 54 (1979) no. 3, pp. 271-296 | DOI
[13] Effective versions of the Chebotarev density theorem, Algebraic number fields: -functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975) (1977), pp. 409-464
[14] Permutations in abelian groups and the sequence , European J. Combin., Volume 27 (2006) no. 5, pp. 635-643 | DOI
[15] Problems and theorems in analysis. Vol. II: Theory of functions, zeros, polynomials, determinants, number theory, geometry, Die Grundlehren der mathematischen Wissenschaften, 216, Springer-Verlag, 1976, xi+391 pages
[16] Sur un problème de M. Erdős, Elem. Math., Volume 15 (1960), pp. 84-85
[17] Some effective cases of the Brauer-Siegel theorem, Invent. Math., Volume 23 (1974), pp. 135-152 | DOI
[18] There are no socialist primes less than , Integers, Volume 14 (2014), Paper No. A63, 4 pages
Cited by Sources: