Ergodic Universality Theorems for the Riemann Zeta-Function and other L-Functions
Journal de Théorie des Nombres de Bordeaux, Tome 25 (2013) no. 2, pp. 471-476.

Nous prouvons un nouveau type de théorème d’universalité pour la fonction zêta de Riemann et d’autres fonctions L (qui sont universelles au sens du théorème de Voronin). Contrairement aux théorèmes d’universalité précédents pour la fonction zêta ou ses généralisations diverses, ici les approximations sont obtenues à partir de l’orbite d’une transformation ergodique sur la droite réelle.

We prove a new type of universality theorem for the Riemann zeta-function and other L-functions (which are universal in the sense of Voronin’s theorem). In contrast to previous universality theorems for the zeta-function or its various generalizations, here the approximating shifts are taken from the orbit of an ergodic transformation on the real line.

@article{JTNB_2013__25_2_471_0,
     author = {J\"orn Steuding},
     title = {Ergodic {Universality} {Theorems} for the {Riemann} {Zeta-Function} and other $L${-Functions}},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {471--476},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {25},
     number = {2},
     year = {2013},
     doi = {10.5802/jtnb.844},
     zbl = {1283.11118},
     mrnumber = {3228316},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.844/}
}
Jörn Steuding. Ergodic Universality Theorems for the Riemann Zeta-Function and other $L$-Functions. Journal de Théorie des Nombres de Bordeaux, Tome 25 (2013) no. 2, pp. 471-476. doi : 10.5802/jtnb.844. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.844/

[1] B. Bagchi, A joint universality theorem for Dirichlet L-functions. Math. Z. 181 (1982), 319–334. | MR 678888 | Zbl 0479.10028

[2] R. Garunkštis, The effective universality theorem for the Riemann zeta-function, in: ‘Special activity in Analytic Number Theory and Diophantine equations’. Proceedings of a workshop at the Max Planck-Institut Bonn 2002, R.B. Heath-Brown and B. Moroz (eds.), Bonner math. Schriften 360 (2003). | MR 2075625 | Zbl 1070.11035

[3] R. Garunkštis, A. Laurinčikas, The Lerch zeta-function. Kluwer Academic Publishers, Dordrecht 2002. | MR 1979048 | Zbl 1028.11052

[4] Geon Ho Choe, Computational Ergodic Theory. Springer 2005. | MR 2130385 | Zbl 1064.37004

[5] A. Reich, Wertverteilung von Zetafunktionen. Arch. Math. 34 (1980), 440–451. | MR 593771 | Zbl 0431.10025

[6] J. Steuding, Value-Distribution of L-Functions. Lecture Notes in Mathematics, Vol. 1877, Springer, 2007. | MR 2330696 | Zbl 1130.11044

[7] S.M. Voronin, Theorem on the ’universality’ of the Riemann zeta-function. Izv. Akad. Nauk SSSR, Ser. Matem. 39 (1975), 475–486 (in Russian); engl. translation in Math. USSR Izv. 9 (1975), 443–453. | MR 472727 | Zbl 0315.10037

[8] S.M. Voronin, On the functional independence of Dirichlet L-functions. Acta Arith. 27 (1975), 493–503 (in Russian). | MR 366836 | Zbl 0308.10025