We study the logarithm of the least common multiple of the sequence of integers given by . Using a result of Homma [5] on the distribution of roots of quadratic polynomials modulo primes we calculate the error term for the asymptotics obtained by Cilleruelo [3].
Nous étudions le logarithme du plus petit commun multiple de la séquence de nombres entiers . En utilisant un résultat de Homma [5] sur la distribution des racines de polynômes quadratiques modulo des nombres premiers, nous calculons le terme d’erreur dans les formules obtenues par Cilleruelo [3].
Juanjo Rué 1; Paulius Šarka 2; Ana Zumalacárregui 3
@article{JTNB_2013__25_2_457_0, author = {Juanjo Ru\'e and Paulius \v{S}arka and Ana Zumalac\'arregui}, title = {On the error term of the logarithm of the lcm of a quadratic sequence}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {457--470}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {25}, number = {2}, year = {2013}, doi = {10.5802/jtnb.843}, mrnumber = {3228315}, zbl = {1283.11058}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.843/} }
TY - JOUR AU - Juanjo Rué AU - Paulius Šarka AU - Ana Zumalacárregui TI - On the error term of the logarithm of the lcm of a quadratic sequence JO - Journal de théorie des nombres de Bordeaux PY - 2013 SP - 457 EP - 470 VL - 25 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.843/ DO - 10.5802/jtnb.843 LA - en ID - JTNB_2013__25_2_457_0 ER -
%0 Journal Article %A Juanjo Rué %A Paulius Šarka %A Ana Zumalacárregui %T On the error term of the logarithm of the lcm of a quadratic sequence %J Journal de théorie des nombres de Bordeaux %D 2013 %P 457-470 %V 25 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.843/ %R 10.5802/jtnb.843 %G en %F JTNB_2013__25_2_457_0
Juanjo Rué; Paulius Šarka; Ana Zumalacárregui. On the error term of the logarithm of the lcm of a quadratic sequence. Journal de théorie des nombres de Bordeaux, Volume 25 (2013) no. 2, pp. 457-470. doi : 10.5802/jtnb.843. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.843/
[1] P. Bateman, J. Kalb and A. Stenger, A limit involving least common multiples. Amer. Math. Monthly 109 (2002), 393–394. | Zbl
[2] P. L. Chebishev, Memoire sur les nombres premiers. J. de Math. Pures et Appl. 17 (1852), 366–390.
[3] J. Cilleruelo, The least common multiple of a quadratic sequence. Compos. Math. 147 (2011), no.4, 1129–1150. | MR | Zbl
[4] W. Duke, J. Friedlander and H. Iwaniec, Equidistribution of roots of a quadratic congruence to prime moduli. Ann. of Math. 141 (1995), no.2, 423–441. | MR | Zbl
[5] K. Homma, On the discrepancy of uniformly distributed roots of quadratic congruences. J. of Number Theory 128 (2008), no.3, 500–508. | MR | Zbl
[6] S. Hong, G. Quian and Q. Tan, The least common multiple of sequence of product of linear polynomials. Acta Math. Hungar. 135 (2012), no.1-2, 160-167. | MR | Zbl
[7] H. L. Montgomery and R. C. Vaughan, Multiplicative number theory. I. Classical theory. Cambridge University Press, 2007. | MR | Zbl
[8] P. Moree, Counting Numbers in multiplicative sets: Landau versus Ramanujan. Šiauliai Math. Semin., to appear. | MR
[9] H. Niederreiter, Random number generation and quasi-Monte Carlo methods. CBMS-NSF Regional Conference Series in Applied Mathematics 63 , Society for Industrial and Applied Mathematics (SIAM), 1992. | MR | Zbl
[10] Á. Tóth, Roots of quadratic congruences. Internat. Math. Res. Notices 14 (2000), 719–739. | MR | Zbl
Cited by Sources: