Let be a local field of residue characteristic . Let be a curve over whose minimal proper regular model has totally degenerate semi-stable reduction. Under certain hypotheses, we compute the prime-to- rational torsion subgroup on the Jacobian of . We also determine divisibility of line bundles on , including rationality of theta characteristics and higher spin structures. These computations utilize arithmetic on the special fiber of .
Soit un corps local de caractéristique résiduelle . Soit une courbe sur dont le modèle régulier propre mimimal a réduction semi-stable totalement dégénérée. Sous certaines hypothèses, nous calculons le sous-groupe rationnel de torsion première à dans la jacobienne de . Nous déterminons aussi la divisibilité de fibrés en droites sur , incluant la rationalité des thêta-caractéristiques et des structures de spin supérieures. Ces calculs utilisent l’arithmétique de la fibre spéciale de .
@article{JTNB_2013__25_1_211_0, author = {Shahed Sharif}, title = {A descent map for curves with totally degenerate semi-stable reduction}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {211--244}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {25}, number = {1}, year = {2013}, doi = {10.5802/jtnb.833}, mrnumber = {3063838}, zbl = {1279.14026}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.833/} }
TY - JOUR AU - Shahed Sharif TI - A descent map for curves with totally degenerate semi-stable reduction JO - Journal de théorie des nombres de Bordeaux PY - 2013 SP - 211 EP - 244 VL - 25 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.833/ DO - 10.5802/jtnb.833 LA - en ID - JTNB_2013__25_1_211_0 ER -
%0 Journal Article %A Shahed Sharif %T A descent map for curves with totally degenerate semi-stable reduction %J Journal de théorie des nombres de Bordeaux %D 2013 %P 211-244 %V 25 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.833/ %R 10.5802/jtnb.833 %G en %F JTNB_2013__25_1_211_0
Shahed Sharif. A descent map for curves with totally degenerate semi-stable reduction. Journal de théorie des nombres de Bordeaux, Volume 25 (2013) no. 1, pp. 211-244. doi : 10.5802/jtnb.833. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.833/
[1] M. F. Atiyah, Riemann surfaces and spin structures. Ann. Sci. École Norm. Sup. 4 (1971), 47–62. | EuDML | Numdam | MR | Zbl
[2] M. Baker, Specialization of linear systems from curves to graphs. Algebra Number Theory 2 (2008), 613–653. | MR | Zbl
[3] S. Bosch and Q. Liu, Rational points of the group of components of a Néron model. Manuscripta Math. 98 (1999), 275–293. | MR | Zbl
[4] S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron models. Springer-Verlag, 1990. | MR | Zbl
[5] A. Chiodo, Stable twisted curves and their -spin structures. Ann. Inst. Fourier 58 (2008), 1635–1689. | EuDML | Numdam | MR | Zbl
[6] O. Gabber, Q. Liu, and D. Lorenzini, The index of an algebraic variety. Inventiones mathematicae (2012), 1–60. | MR | Zbl
[7] B. H. Gross and J. Harris, On some geometric constructions related to theta characteristics. Contributions to automorphic forms, geometry, and number theory, Johns Hopkins Univ. Press, 2004, 279–311. | MR | Zbl
[8] R. Hartshorne, Algebraic geometry. Springer-Verlag, 1977. | MR | Zbl
[9] N. M. Katz, Galois properties of torsion points on abelian varieties. Inventiones Mathematicae 62 (1981), 481–502. | EuDML | MR | Zbl
[10] Q. Liu, Algebraic geometry and arithmetic curves. Oxford Graduate Texts in Mathematics 6, Oxford, 2002. | MR | Zbl
[11] D. Mumford, Theta characteristics of an algebraic curve. Ann. Sci. École Norm. Sup. 4 (1971), 181–192. | EuDML | Numdam | MR | Zbl
[12] T. Ono, Arithmetic of algebraic tori. Ann. of Math. 74 (1961), 101–139. | MR | Zbl
[13] M. Pacini, On Néron models of moduli spaces of theta characteristics. J. Algebra 323 (2010), 658–670. | MR | Zbl
[14] R. Parimala and W. Scharlau, On the canonical class of a curve and the extension property for quadratic forms. Recent advances in real algebraic geometry and quadratic forms, AMS, Providence, 1994, 339–350. | MR | Zbl
[15] B. Poonen and E. Rains, Self cup products and the theta characteristic torsor. Math. Res. Letters 18 (2011), 1305–1318. | MR | Zbl
[16] M. Raynaud, Spécialisation du foncteur de Picard. Inst. Hautes Études Sci. Publ. Math. 38 (1970), 27–76. | EuDML | Numdam | MR | Zbl
[17] V. Suresh, On the canonical class of hyperelliptic curves. Recent advances in real algebraic geometry and quadratic forms, AMS, Providence, 1994, 399–404. | MR | Zbl
Cited by Sources: