We consider , the number of solutions to the equation in nonnegative integers and integers , for given integers , , , and . When , we show that except for a finite number of cases all of which satisfy for each solution; when , we show that except for three infinite families of exceptional cases. We find several different ways to generate an infinite number of cases giving solutions.
Nous considérons , le nombre de solutions de l’équation en nombres entiers non négatifs , , et nombres entiers , pour des entiers donnés , , , et . Lorsque , nous montrons que , sauf pour un nombre fini de cas qui satisfont à pour chaque solution ; lorsque , nous montrons que sauf pour trois familles infinies de cas exceptionnels. Nous trouvons plusieurs façons de générer un nombre infini de cas donnant solutions.
Keywords: Pillai’s equation, Exponential Diophantine equations
Reese Scott 1; Robert Styer 2
@article{JTNB_2013__25_1_179_0, author = {Reese Scott and Robert Styer}, title = {The number of solutions to the generalized {Pillai} equation $\pm r a^x \pm s b^y = c$.}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {179--210}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {25}, number = {1}, year = {2013}, doi = {10.5802/jtnb.832}, mrnumber = {3063837}, zbl = {1271.11038}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.832/} }
TY - JOUR AU - Reese Scott AU - Robert Styer TI - The number of solutions to the generalized Pillai equation $\pm r a^x \pm s b^y = c$. JO - Journal de théorie des nombres de Bordeaux PY - 2013 SP - 179 EP - 210 VL - 25 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.832/ DO - 10.5802/jtnb.832 LA - en ID - JTNB_2013__25_1_179_0 ER -
%0 Journal Article %A Reese Scott %A Robert Styer %T The number of solutions to the generalized Pillai equation $\pm r a^x \pm s b^y = c$. %J Journal de théorie des nombres de Bordeaux %D 2013 %P 179-210 %V 25 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.832/ %R 10.5802/jtnb.832 %G en %F JTNB_2013__25_1_179_0
Reese Scott; Robert Styer. The number of solutions to the generalized Pillai equation $\pm r a^x \pm s b^y = c$.. Journal de théorie des nombres de Bordeaux, Volume 25 (2013) no. 1, pp. 179-210. doi : 10.5802/jtnb.832. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.832/
[1] M. Bennett, On some exponential equations of S. S. Pillai. Canadian Journal of Mathematics 53 (2001) no. 5, 897–922.
[2] Y. F. Bilu, Y. Bugeaud, M. Mignotte, Catalan’s Equation, book in preparation.
[3] Y. Bugeaud, F. Luca, On Pillai’s Diophantine equation. New York J. of Math. 12 (2006), 193–217 (electronic).
[4] R. K. Guy, C. B. Lacampagne, J. L. Selfridge, Primes at a glance. Math. Comp. 48 (1987), 183–202.
[5] B. He, A. Togbé, On the number of solutions of the exponential Diophantine equation . Bull. Aust. Math. Soc. 81 (2010), 177–185.
[6] M. Le, A note on the diophantine equation . Indag. Math. (N. S.) 3 (June 1992), 185–191.
[7] E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II. Izv. Math. 64 (2000), 1217–1269.
[8] M. Mignotte, A corollary to a theorem of Laurent-Mignotte-Nesterenko. Acta Arith. 86 (1998), 101–111.
[9] M. Mignotte, A kit on linear forms in three logarithms, in preparation, February 7, 2008. http://www-irma.u-strasbg.fr/~bugeaud/travaux/kit.pdf
[10] S. S. Pillai, On the inequality . J. Indian Math. Soc. (1) 19 (1931), 1–11.
[11] S. S. Pillai, On the equation . Bull. Calcutta Soc. 37 (1945), 15–20.
[12] R. Scott, On the Equations and . Journal of Number Theory 44 (1993), no. 2, 153–165.
[13] R. Scott, R. Styer, On and related three term exponential Diophantine equations with prime bases. Journal of Number Theory 105 (2004), no. 2, 212–234.
[14] R. Scott, R. Styer, On the generalized Pillai equation . Journal of Number Theory 118 (2006), 236–265.
[15] R. Scott, R. Styer, The generalized Pillai equation . Journal of Number Theory 131 (2011), 1037–1047.
[16] R. Scott, R. Styer, Handling a large bound for a problem on the generalized Pillai equation . Preprint.
[17] T. N. Shorey, On the equation . Nederl. Akad. Wetensch. Indag. Math. 48 (1986), no. 3, 353–358.
[18] R. Styer, Small two-variable exponential Diophantine equations. Mathematics of Computation 60 (1993), no. 202, 811–816.
[19] M. Waldschmidt, Perfect powers: Pillai’s works and their developments. Arxiv preprint arXiv:0908.4031, August 27, 2009.
Cited by Sources: