On classifying Laguerre polynomials which have Galois group the alternating group
Journal de Théorie des Nombres de Bordeaux, Tome 25 (2013) no. 1, pp. 1-30.

Nous démontrons que le discriminant du polynôme de Laguerre généralisé L n (α) (x), pour un couple (n,α) d’entiers avec n1, n’est le carré d’un entier non nul que si (n,α) fait partie d’une trentaine d’ensembles explicites et infinis ou si (n,α) fait partie d’un ensemble supplémentaire qui est fini. Donc nous obtenons de nouvelles informations concernant la réalisation du groupe alterné A n comme groupe de Galois du polynôme L n α (x) sur les nombres rationnels . Par exemple, nous établissons que pour tous les entiers positifs n avec n2(mod4) (avec un nombre fini de cas exceptionnels), la seule valeur d’α pour laquelle le groupe de Galois est le groupe alterné A n est le cas où α=n.

We show that the discriminant of the generalized Laguerre polynomial L n (α) (x) is a non-zero square for some integer pair (n,α), with n1, if and only if (n,α) belongs to one of 30 explicitly given infinite sets of pairs or to an additional finite set of pairs. As a consequence, we obtain new information on when the Galois group of L n (α) (x) over is the alternating group A n . For example, we establish that for all but finitely many positive integers n2(mod4), the only α for which the Galois group of L n (α) (x) over is A n is α=n.

Reçu le :
Publié le :
DOI : https://doi.org/10.5802/jtnb.822
Classification : 11R32,  11C08,  33C45
Mots clés : Generalized Laguerre polynomials, discriminants
@article{JTNB_2013__25_1_1_0,
     author = {Pradipto Banerjee and Michael Filaseta and Carrie E. Finch and J. Russell Leidy},
     title = {On classifying {Laguerre} polynomials which have {Galois} group the alternating group},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {1--30},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {25},
     number = {1},
     year = {2013},
     doi = {10.5802/jtnb.822},
     zbl = {1287.11128},
     mrnumber = {3063827},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.822/}
}
Pradipto Banerjee; Michael Filaseta; Carrie E. Finch; J. Russell Leidy. On classifying Laguerre polynomials which have Galois group the alternating group. Journal de Théorie des Nombres de Bordeaux, Tome 25 (2013) no. 1, pp. 1-30. doi : 10.5802/jtnb.822. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.822/

[1] M.  A. Bennett, M. Filaseta and O. Trifonov, On the factorization of consecutive integers. Journal für die reine und angewandte Mathematik (Crelle’s Journal) 629 (2009), 171–200. | MR 2527417 | Zbl 1223.11040

[2] R. F. Coleman, On the Galois groups of the exponential Taylor polynomials. Ensein. Math. (2) 33 (1987), no. 3-4, 183–189. | MR 925984 | Zbl 0672.12004

[3] M. Filaseta, C. E. Finch and J R. Leidy, T. N. Shorey’s influence in the theory of irreducible polynomials. Diophantine Equations (ed. N. Saradha), Narosa Publ. House, New Delhi, 2008, pp. 77–102. | MR 2518470 | Zbl 1194.11033

[4] M. Filaseta, S. Laishram and N. Saradha, Solving n(n+d)(n+(k-1)d)=by 2 with P(b)Ck. International Journal of Number Theory 8 (2012), 161–173. | MR 2887888 | Zbl pre06009237

[5] M. Filaseta and T. Y. Lam, On the irreducibility of generalized Laguerre polynomials. Acta Arith. 105 (2002), 177–182. | MR 1932764 | Zbl 1010.12001

[6] M. Filaseta, T. Kidd and O. Trifonov, Laguerre Polynomials with Galois group A m for each m. Journal of Number Theory 132 (2012), 776–805. | MR 2887618 | Zbl pre06015653

[7] M. Filaseta and R. L. Williams Jr., On the irreducibility of a certain class of Laguerre polynomials. J. Number Theory 100 (2003), 229–250. | MR 1978454 | Zbl 1019.11006

[8] M. Filaseta and O. Trifonov, The Irreducibility of the Bessel polynomials. J. Reine Angew. Math. 550 (2002), 125–140. | MR 1925910 | Zbl 1022.11053

[9] R. Gow, Some generalized Laguerre polynomials whose Galois groups are the alternating groups. J. Number Theory 31 (1989), 201–207. | MR 987573 | Zbl 0693.12009

[10] E. Grosswald, Bessel Polynomials. Lecture Notes in Math. 698, Springer, Berlin, 1978. | MR 520397 | Zbl 0416.33008

[11] F. Hajir, Some A n -extensions obtained from generalized Laguerre polynomials. J. Number Theory 50 (1995), 206–212. | MR 1316816 | Zbl 0829.12004

[12] F. Hajir, Algebraic properties of a family of generalized Laguerre polynomials. Canad. J. Math. 61 (2009), no. 3, 583–603. | MR 2514486 | Zbl 1255.33006

[13] F. Hajir, On the Galois group of generalized Laguerre polynomials. J. Théor. Nombres Bordeaux 17 (2005), no. 2, 517–525. | Numdam | MR 2211305 | Zbl 1094.11042

[14] F. Hajir and S. Wong, Specializations of one parameter family of polynomials. Ann. Inst. Fourier (Grenoble) 56 (2006), no. 4, 1127–1163. | Numdam | MR 2266886 | Zbl 1160.12004

[15] H. Harborth and A. Kemnitz, Calculations for Bertrand’s postulate. Math. Mag. 54 (1981), no. 1, 33–34. | MR 605278 | Zbl 0453.10006

[16] D. Hilbert, Über die Irreduzibilität ganzer rationaler Funktionen mit ganzzahligen Koeffizienten. J. reine angew. Math. 110 (1892), 104–129.

[17] S. Laishram and T. N. Shorey, Irreducibility of generalized Hermite-Laguerre polynomials, II. Indag. Math. (N.S.) 20 (2009), no. 3, 427–434. | MR 2639981 | Zbl 1196.33009

[18] S. Laishram and T. N. Shorey, Number of prime divisors in a product of terms of an arithmetic progression. Indag. Math. (N.S.) 15 (2004), 505–521. | MR 2114934 | Zbl 1142.11356

[19] B. H. Matzat, Konstruktive Galoistheorie. Lecture Notes in Math. 1284, Springer-Verlag, Berlin, 1987. | MR 1004467 | Zbl 0634.12011

[20] I. Schur, Einige Sätze über Primzahlen mit Anwendungen auf Irreduzibilitätsfragen, I. Sitzungsber. Preuss. Akad. Wiss. Berlin Phys.-Math. Kl. 14 (1929), 125–136.

[21] I. Schur, Gleichungen ohne Affekt. Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-Mathematische Klasse (1930), 443–449.

[22] I. Schur, Affectlose Gleichungen in der Theorie der Laguerreschen und Hermiteschen Polynome. Journal für die reine und angewandte Mathematik 165 (1931), 52–58. | Zbl 0002.11501

[23] E. A. Sell, On a certain family of generalized Laguerre polynomials. J. Number Theory 107 (2004), no. 2, 266–281. | MR 2072388 | Zbl 1053.11083

[24] T. N. Shorey and R. Tijdeman, Generalizations of some irreducibility results by Schur. Acta Arith. 145 (2010), no. 4, 341–371. | MR 2738152 | Zbl 1208.12003