Let be a Galois extension of a countable Hilbertian field . Although need not be Hilbertian, we prove that an abundance of large Galois subextensions of are.
Soit une extension galoisienne d’un corps hilbertien et dénombrable. Bien que ne soit pas nécessairement hilbertien, nous montrons qu’il existe beaucoup de grandes sous-extensions de qui le sont.
@article{JTNB_2013__25_1_31_0, author = {Lior Bary-Soroker and Arno Fehm}, title = {Random {Galois} extensions of {Hilbertian} fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {31--42}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {25}, number = {1}, year = {2013}, doi = {10.5802/jtnb.823}, mrnumber = {3063828}, zbl = {06173995}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.823/} }
TY - JOUR AU - Lior Bary-Soroker AU - Arno Fehm TI - Random Galois extensions of Hilbertian fields JO - Journal de théorie des nombres de Bordeaux PY - 2013 SP - 31 EP - 42 VL - 25 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.823/ DO - 10.5802/jtnb.823 LA - en ID - JTNB_2013__25_1_31_0 ER -
%0 Journal Article %A Lior Bary-Soroker %A Arno Fehm %T Random Galois extensions of Hilbertian fields %J Journal de théorie des nombres de Bordeaux %D 2013 %P 31-42 %V 25 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.823/ %R 10.5802/jtnb.823 %G en %F JTNB_2013__25_1_31_0
Lior Bary-Soroker; Arno Fehm. Random Galois extensions of Hilbertian fields. Journal de théorie des nombres de Bordeaux, Volume 25 (2013) no. 1, pp. 31-42. doi : 10.5802/jtnb.823. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.823/
[1] Lior Bary-Soroker, On the characterization of Hilbertian fields. International Mathematics Research Notices, 2008. | MR | Zbl
[2] Lior Bary-Soroker, On pseudo algebraically closed extensions of fields. Journal of Algebra 322(6) (2009), 2082–2105. | MR | Zbl
[3] Lior Bary-Soroker and Arno Fehm, On fields of totally -adic numbers. http://arxiv.org/abs/1202.6200, 2012.
[4] M. Fried and M. Jarden, Field Arithmetic. Ergebnisse der Mathematik III 11. Springer, 2008. 3rd edition, revised by M. Jarden. | MR | Zbl
[5] Dan Haran, Hilbertian fields under separable algebraic extensions. Invent. Math. 137(1) (1999), 113–126. | MR | Zbl
[6] Dan Haran, Moshe Jarden, and Florian Pop, The absolute Galois group of subfields of the field of totally -adic numbers. Functiones et Approximatio, Commentarii Mathematici, 2012. | MR
[7] Moshe Jarden, Large normal extension of Hilbertian fields. Mathematische Zeitschrift 224 (1997), 555–565. | MR | Zbl
[8] Thomas J. Jech, Set Theory. Springer, 2002. | MR | Zbl
[9] Serge Lang, Diophantine Geometry. Interscience Publishers, 1962. | MR | Zbl
[10] Jean-Pierre Serre, Topics in Galois Theory. Jones and Bartlett Publishers, 1992. | MR | Zbl
Cited by Sources: