Soit
Let
@article{JTNB_2013__25_1_31_0, author = {Lior Bary-Soroker and Arno Fehm}, title = {Random {Galois} extensions of {Hilbertian} fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {31--42}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {25}, number = {1}, year = {2013}, doi = {10.5802/jtnb.823}, mrnumber = {3063828}, zbl = {06173995}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.823/} }
TY - JOUR AU - Lior Bary-Soroker AU - Arno Fehm TI - Random Galois extensions of Hilbertian fields JO - Journal de théorie des nombres de Bordeaux PY - 2013 SP - 31 EP - 42 VL - 25 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.823/ DO - 10.5802/jtnb.823 LA - en ID - JTNB_2013__25_1_31_0 ER -
%0 Journal Article %A Lior Bary-Soroker %A Arno Fehm %T Random Galois extensions of Hilbertian fields %J Journal de théorie des nombres de Bordeaux %D 2013 %P 31-42 %V 25 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.823/ %R 10.5802/jtnb.823 %G en %F JTNB_2013__25_1_31_0
Lior Bary-Soroker; Arno Fehm. Random Galois extensions of Hilbertian fields. Journal de théorie des nombres de Bordeaux, Tome 25 (2013) no. 1, pp. 31-42. doi : 10.5802/jtnb.823. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.823/
[1] Lior Bary-Soroker, On the characterization of Hilbertian fields. International Mathematics Research Notices, 2008. | MR | Zbl
[2] Lior Bary-Soroker, On pseudo algebraically closed extensions of fields. Journal of Algebra 322(6) (2009), 2082–2105. | MR | Zbl
[3] Lior Bary-Soroker and Arno Fehm, On fields of totally
[4] M. Fried and M. Jarden, Field Arithmetic. Ergebnisse der Mathematik III 11. Springer, 2008. 3rd edition, revised by M. Jarden. | MR | Zbl
[5] Dan Haran, Hilbertian fields under separable algebraic extensions. Invent. Math. 137(1) (1999), 113–126. | MR | Zbl
[6] Dan Haran, Moshe Jarden, and Florian Pop, The absolute Galois group of subfields of the field of totally
[7] Moshe Jarden, Large normal extension of Hilbertian fields. Mathematische Zeitschrift 224 (1997), 555–565. | MR | Zbl
[8] Thomas J. Jech, Set Theory. Springer, 2002. | MR | Zbl
[9] Serge Lang, Diophantine Geometry. Interscience Publishers, 1962. | MR | Zbl
[10] Jean-Pierre Serre, Topics in Galois Theory. Jones and Bartlett Publishers, 1992. | MR | Zbl
- Topological proofs of results on large fields, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 360 (2022), pp. 1187-1192 | DOI:10.5802/crmath.305 | Zbl:1520.12002
- Finite embedding problems over noncommutative fields, Israel Journal of Mathematics, Volume 249 (2022) no. 2, pp. 617-650 | DOI:10.1007/s11856-022-2321-7 | Zbl:1533.16030
- Galois groups over rational function fields over skew fields, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 358 (2020) no. 7, pp. 785-790 | DOI:10.5802/crmath.20 | Zbl:1477.12001
- Random Galois extensions of Hilbertian rings, Mathematica, Volume 62 (2020) no. 1, pp. 61-72 | DOI:10.24193/mathcluj.2020.1.07 | Zbl:1499.12003
- Cubic twin prime polynomials are counted by a modular form, Canadian Journal of Mathematics, Volume 71 (2019) no. 6, pp. 1323-1350 | DOI:10.4153/cjm-2018-018-9 | Zbl:1460.11146
- Existentially generated subfields of large fields, Journal of Algebra, Volume 517 (2019), pp. 78-94 | DOI:10.1016/j.jalgebra.2018.09.021 | Zbl:1431.12009
- Galois points on varieties, Journal of the Ramanujan Mathematical Society, Volume 31 (2016) no. 2, pp. 189-194 | Zbl:1425.11132
Cité par 7 documents. Sources : zbMATH