The algebraic groups leading to the Roth inequalities
Journal de Théorie des Nombres de Bordeaux, Tome 24 (2012) no. 2, pp. 257-292.

On détermine les groupes algébriques qui ont une étroite relation avec les inégalités de Roth.

We determine the algebraic groups which have a close relation to the Roth inequalities.

Reçu le :
Publié le :
DOI : https://doi.org/10.5802/jtnb.796
@article{JTNB_2012__24_2_257_0,
     author = {Masami Fujimori},
     title = {The algebraic groups leading to the {Roth} inequalities},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {257--292},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {24},
     number = {2},
     year = {2012},
     doi = {10.5802/jtnb.796},
     zbl = {1276.11120},
     mrnumber = {2950692},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.796/}
}
Masami Fujimori. The algebraic groups leading to the Roth inequalities. Journal de Théorie des Nombres de Bordeaux, Tome 24 (2012) no. 2, pp. 257-292. doi : 10.5802/jtnb.796. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.796/

[1] Y. André, Slope filtrations. Confluentes Math. 1 (2009), 1–85 (arXiv:0812.3921v2). | MR 2571693

[2] A. Borel, Linear Algebraic Groups, Second Enlarged Edition. Graduate Texts in Math. 126, Springer-Verlag, New York, 1991. | MR 1102012 | Zbl 0726.20030

[3] J.-F. Dat, S. Orlik, and M. Rapoport, Period Domains over Finite and p-adic Fields. Cambridge Tracts in Math. 183, Cambridge Univ. Press, New York, 2010. | MR 2676072

[4] P. Deligne and J. S. Milne, Tannakian Categories. In Hodge Cycles, Motives, and Shimura Varieties, Lect. Notes in Math. 900, 101–228, Springer-Verlag, Berlin Heidelberg, 1982. | MR 654325 | Zbl 0477.14004

[5] J.-H. Evertse, The subspace theorem and twisted heights. Preprint, 32pp. (http://www.math.leidenuniv.nl/~evertse/publications.shtml)

[6] G. Faltings, Mumford-Stabilität in der algebraischen Geometrie. Proceedings of the International Congress of Mathematicians 1994, Zürich, Switzerland, 648–655, Birkhäuser Verlag, Basel, Switzerland, 1995. | MR 1403965 | Zbl 0871.14010

[7] G. Faltings and G. Wüstholz, Diophantine approximations on projective spaces. Invent. Math. 116 (1994), 109–138. | MR 1253191 | Zbl 0805.14011

[8] M. Fujimori, On systems of linear inequalities. Bull. Soc. Math. France 131 (2003), 41–57. Corrigenda. ibid. 132 (2004), 613–616. | Numdam | MR 1975805

[9] M. Rapoport, Analogien zwischen den Modulräumen von Vektorbündeln und von Flaggen. Jahresber. Deutsch. Math.-Verein. 99 (1997), 164–180. | MR 1480327 | Zbl 0891.14010

[10] M. Rapoport, Period domains over finite and local fields. In Algebraic Geometry—Santa Cruz 1995, Proc. Sympos. Pure Math. 62, 361–381, Amer. Math. Soc., Providence, RI, 1997. | MR 1492528 | Zbl 0924.14009

[11] N. S. Rivano, Catégories Tannakiennes. Lect. Notes in Math. 265, Springer-Verlag, Berlin Heidelberg, 1972. | MR 338002 | Zbl 0241.14008

[12] W. M. Schmidt, Diophantine Approximation. Lect. Notes in Math. 785, Springer-Verlag, Berlin Heidelberg, 1980. | MR 568710 | Zbl 0421.10019

[13] B. Totaro, Tensor products in p-adic Hodge theory. Duke Math. J. 83 (1996), 79–104. | MR 1388844 | Zbl 0873.14019