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Journal de Théorie des Nombres
de Bordeaux 24 (2012), 257-292

The algebraic groups leading to
the Roth inequalities

par Masami FUJIMORI

Résumé. On détermine les groupes algébriques qui ont une étroite
relation avec les inégalités de Roth.

Abstract. We determine the algebraic groups which have a close
relation to the Roth inequalities.

Introduction
Let α be a real algebraic number; r, s indeterminates; | · | the usual

absolute value on the field of real numbers; and ε an arbitrary positive
constant. Suppose that α is not a rational number. Finiteness of the number
of rational integral solutions to the famous Roth inequality∣∣∣∣α− s

r

∣∣∣∣ < 1
|r|2+ε

is deduced by a simple argument from finiteness of the number of rational
integral solutions to the linear inequalities

|αr − s| < Q−1−δ, |r| < Q1−δ (Q > 1),

where Q is a (variable) real parameter and δ is an arbitrarily fixed positive
number (cf. e.g. [12, VI §3]). We call this latter system (of linear inequal-
ities) a classical Roth system in this paper. We denote respectively by Q
and by Q̄ the field of rational numbers and its algebraic closure considered
in the field C of complex numbers: Q̄ ↪→ C. Given the classical Roth sys-
tem, we attach to the vector space V̆ = Qr ⊕ Qs a filtration F ·αV̆ over Q̄
defined as

F iαV̆ =


Q̄⊗Q V̆ (i ≤ −1)
Q̄(αr − s) (−1 < i ≤ 1)

0 (i > 1).
Let x1, . . . , xn be indeterminates; l1, . . . , ln linearly independent linear

forms in x1, . . . , xn with real algebraic coefficients; and c(1), . . . , c(n) real
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constant numbers with
∑n
q=1 c(q) = 0. The system S = (l1, . . . , ln;

c(1), . . . , c(n)) is called a general Roth system if the simultaneous linear
inequalities

|lq| < Q−c(q)−δ (Q > 1; q = 1, . . . , n)
have only a finite number of rational integral solutions for each arbitrarily
fixed positive number δ. We generally attach to the vector space V =
Qx1 ⊕ · · · ⊕Qxn a filtration F ·SV over Q̄ defined as

F iSV =
∑
c(q)≥i

Q̄ lq (i ∈ R).

The filtration thus obtained is descending, exhaustive, separated, and left-
continuous in the sense that we have

F iSV ⊃ F
j
SV (i ≤ j),

⋃
i∈R

F iSV = Q̄⊗Q V,

⋂
i∈R

F iSV = 0, and F iSV =
⋂
j<i

F jSV.

For a finite dimensional non-zero vector space V over Q equipped with
a filtration F ·V (i ∈ R) over Q̄ as above, the real number

µ(V ) = µ (V, F ·V ) = 1
dimQ V

∑
w∈R

w dimQ̄ grw (F ·V ) ,

where grw (F ·V ) = FwV
/
Fw+V, Fw+V = ∪j>wF jV, is called the slope

of the filtered vector space V = (V, F ·V ). A filtered vector space V or
its filtration is said to be semi-stable if for any non-zero subspace W over
Q of V with the (induced) sub-filtration over Q̄, the inequality µ(W ) ≤
µ(V ) is valid. We denote by Css

0 (Q, Q̄) the category of finite dimensional
vector spaces over Q with semi-stable filtration over Q̄ of slope zero. The
morphisms in Css

0 (Q, Q̄) are the linear maps over Q which respect filtrations
when linearly extended over Q̄.

Theorem 0.1 (Schmidt, cf. e.g. [12, VI Theorem 2B]). The filtration F ·SV
derived from a general Roth system S is semi-stable of slope zero. Con-
versely, every object of Css

0 (Q, Q̄) whose filtration is defined over Q̄ ∩ R is
derived from a general Roth system.

For objects V = (V, F ·V ) and W = (W,F ·W ) in Css
0 (Q, Q̄), their tensor

product V ⊗W is the vector space V ⊗Q W equipped with the filtration

F i(V ⊗Q W ) =
∑
j+q=i

F jV ⊗Q̄ F
qW (i ∈ R).

The claim that the tensor product V ⊗W is again semi-stable is the heart
of the next:
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Theorem 0.2 (Faltings [6], Totaro [13]). Let ωss
0 (Q, Q̄) be the forgetful

tensor functor of Css
0 (Q, Q̄) to the tensor category VecQ of finite dimensional

vector spaces over Q. The tensor category Css
0 (Q, Q̄) is equivalent to the

tensor category RepQ Autωss
0 (Q, Q̄) of finite dimensional representations

over Q of the affine group scheme Autωss
0 (Q, Q̄) of natural equivalences of

the functor ωss
0 (Q, Q̄).

We prove in the present paper the following:

Theorem 0.3. If the real algebraic number α is not quadratic over Q, then
there exists a fully faithful tensor functor ι of the category RepQ SL2 of finite
dimensional representations over Q of the special linear group SL2 of degree
2 into the tensor category Css

0 (Q, Q̄) such that the functor ι commutes with
the forgetful tensor functors to VecQ and such that the image of ι contains
the filtered vector space

(
V̆ , F ·αV̆

)
derived from a classical Roth system.

Similarly, if the real algebraic number α is quadratic over Q, then there
exists a fully faithful tensor functor ι of the category RepQ Tα of finite di-
mensional representations over Q of a one-dimensional anisotropic torus
Tα over Q into Css

0 (Q, Q̄) such that the group Tα(Q) of Q-valued points of
the torus Tα is isomorphic to the kernel of the norm map of the quadratic
number field Q(α) over Q, such that the functor ι is compatible with the for-
getful tensor functors to VecQ, and such that its image contains the filtered
vector space

(
V̆ , F ·αV̆

)
.

Denote by Ğ the anisotropic torus Tα or the special linear group SL2 ac-
cording as α is quadratic over Q or not. Theorem 0.3 implies that the action
of Autωss

0 (Q, Q̄) on the filtered vector space
(
V̆ , F ·αV̆

)
factors through an

action of the linear algebraic group Ğ. In this way, the classical Roth sys-
tem corresponds to a representation of a one-dimensional anisotropic torus
Tα or the special linear group SL2 of degree 2 according as the coefficient
α is quadratic over Q or not.

The definition of the category Css
0 (Q, Q̄) is motivated by the strong (or

parametric) subspace theorem of Schmidt (e.g. [12, VI §3]) in Diophantine
Approximation ([8], [5]). It originates from the observations of Faltings
and Wüstholz ([7], [6]) that the condition of a linear system being a
general Roth system agrees with the semi-stability in Geometric Invariant
Theory.

For an arbitrary field K and any Galois extension field L of K, we
can define a category Css

0 (K,L) in a parallel way to the case of Css
0 (Q, Q̄).

We shall also determine in that case the algebraic group Ğ as above (less
explicitly when the base field K has positive characteristic). Note that the
concept of a vector space with filtration in this paper coincides with the one
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in the theory of period domains over finite and local fields of Rapoport
[10].

Now we state our plan of the present paper. In Section 1, we recall several
facts on categories of vector spaces with filtrations and tensor functors of
the category of finite dimensional representations of an algebraic group to
a category of vector spaces with filtrations. In Section 2, we define a linear
algebraic group whose representation leads to a classical Roth system.
Through Sections 3 and 4, we prove Theorem 0.3 in a slightly general
setting.

When we take into account solutions to linear inequalities in, for ex-
ample, the ring of integers in a number field and consider more linear in-
equalities, the category of vector spaces with multiple filtrations indexed
by a set emerges. For multiple filtrations, we can naturally define the no-
tion of slope and semi-stability from the viewpoint of linear inequalities.
Let M be an index set and Ksep a separable algebraic closure of an ar-
bitrary field K. We denote by Css

0 (K,Ksep,M) the category of finite di-
mensional vector spaces over K with multiple filtrations over Ksep indexed
by M which is semi-stable of slope zero. Let ωss

0 (K,Ksep,M) be the for-
getful tensor functor of Css

0 (K,Ksep,M) to the tensor category VecK of
finite dimensional vector spaces over K. As in the single filtration case,
a tensor category Css

0 (K,Ksep,M) is equivalent to the tensor category
RepK Autωss

0 (K,Ksep,M) of finite dimensional representations over K of
the affine group scheme Autωss

0 (K,Ksep,M) of natural equivalences of the
functor ωss

0 (K,Ksep,M) by the result of Faltings [6] or of Totaro [13].
In the appendix of the present paper, we prove in particular the following:

Theorem 0.4. Any connected reductive group G over K occurs (up to
isomorphism) as a quotient of the affine group scheme Autωss

0 (K,Ksep,M)
for an index set M with sufficiently large cardinality depending on G.

Acknowledgments. The author expresses his gratitude to the referee
for valuable comments and helpful suggestions on the first version of the
present paper. The author also extends his thanks to Professor Takao
WATANABE for answering me several questions. Thanks are as well due
to Professor Noriko HIRATA-KOHNO for her constant warm encour-
agement.

1. Filtration and representation
A functorial way is formulated to associate the finite dimensional repre-

sentations of an algebraic group over a field with finite dimensional vector
spaces which are filtered over an extension field. We look at some of its
properties.
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Let K be an arbitrary field and L a (finite or infinite) Galois extension
field of K. To confirm the terminology we use in this paper, we first recall
the definitions of some basic notions.

Definition 1.1 (filtration over an extension field [10] [8]). For a finite
dimensional vector space V over K, a family V i (i ∈ R) of subspaces over
L of L⊗K V is called a filtration over L of V if

V i ⊃ V j (i ≤ j),
⋃
i∈R

V i = L⊗K V,
⋂
i∈R

V i = 0,

and
V i =

⋂
j<i

V j

are satisfied. The condition says that the filtration is defined over L and
that it is descending, exhaustive, separated, and left-continuous.

Remark 1.2. Rapoport [10] is calling such a filtration an R-filtration over
L. In our previous paper [8], we have called it an L-filtration for simplicity.

Definition 1.3 (filtered homomorphism). For vector spaces V andW over
K with filtrations over L, a linear map f : V →W over K is called filtered
if it satisfies f

(
V i
)
⊂W i for all i ∈ R when the map f is linearly extended

over L.

Definition 1.4 (sub-filtration and quotient filtration). Let V be a vector
space over K with a filtration over L as above. For a subspace W over K
of V , the sub-filtration over L on W is given by

W i = (L⊗K W ) ∩ V i (i ∈ R).
The filtration over L on V/W defined as

(V/W )i = (V i + L⊗K W )/L⊗K W (i ∈ R)
is called the quotient filtration.

Definition 1.5 (tensor product). For vector spaces V and W with filtra-
tions, the tensor product (V ⊗W )· of their filtrations is a filtration over L
of the vector space V ⊗K W over K defined as

(V ⊗W )i =
∑
j+q=i

V j ⊗LW q (i ∈ R).

Remark 1.6. The tensor product of filtrations is associative and commuta-
tive in the obvious sense. It is compatible with the associativity law and
the commutativity law of the underlying tensor product of vector spaces.

Let G be an algebraic group over K, κ : T ×K L → G ×K L a group
homomorphism over L of a torus T over K which splits over L, Y the
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cocharacter group over L of T , and e ∈ R ⊗Z Y . We associate a finite
dimensional representation over K of G with a filtration over L as follows.

Let V be a finite dimensional representation space over K of G (some-
times called a G-representation over K in the following) and X the char-
acter group over L of T . We have a direct sum decomposition

L⊗K V =
⊕
χ∈X

Vχ,

where Vχ is the vector space over L on which T ×K L acts by multiplication
of a character χ via the group homomorphism κ. We define a filtration over
L of V as

V i
κ, e =

⊕
〈χ,e〉≥i

Vχ.

Here the pairing 〈·, ·〉 is the canonical Z-valued one between the elements
of X and those of Y , extended linearly to an R-valued functional for the
elements of R⊗Z Y .

For another representation space W over K of G, we have a similar
decomposition

L⊗K W =
⊕
χ∈X

Wχ.

Since a G-equivariant linear map of V toW sends each Vχ toWχ, the linear
map sends V i

κ, e to W i
κ, e, hence it is filtered.

The representation on the tensor product V ⊗KW is defined diagonally,
hence we have an equality

(V ⊗K W )χ =
⊕

φ+ψ=χ
Vφ ⊗LWψ.

Thus
(V ⊗K W )iκ, e =

⊕
〈χ,e〉≥i

(V ⊗K W )χ

=
⊕

〈φ+ψ,e〉≥i
Vφ ⊗LWψ

=
∑
j+q=i

V j
κ, e ⊗LW q

κ, e.

This means the following.

Lemma 1.7 (compatibility). The filtration on the G-representation V ⊗K
W is the same as the filtration on the tensor product of vector spaces with
filtrations.

Remark 1.8. A functorial filtration on the finite dimensional representations
of an algebraic group usually appears in this way ([11, IV 2.2.5 Proposition
3)], [3, Theorem 4.2.13]).
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Let M be a non-empty finite or countable infinite set of indices.

Definition 1.9 (category of vector spaces with multiple filtrations). We
denote by C(K,L,M) the tensor category composed of the following objects
and morphisms.

An object is a finite dimensional vector space V over K equipped with
a family of filtrations V ·v (v ∈M) over L of V such that for except a finite
number of indices v, the filtrations are trivial:

V i
v =

{
L⊗K V (i ≤ 0)

0 (i > 0)
For vector spaces with multiple filtrations V andW as above, a morphism

of V to W is a linear map over K of V to W which is filtered with respect
to every index v ∈M.

The tensor product V ⊗W of V andW is a vector space V ⊗KW over K
equipped with the tensor product of filtrations V ·v and W ·v for each v ∈M.

Remark 1.10. The tensor product of objects is apparently associative and
commutative. The associativity law and the commutativity law are compat-
ible with those of the underlying vector spaces. A one-dimensional vector
space over K equipped with the trivial filtrations for all v ∈M gives a unit
object.

It is easy to check that the tensor category C(K,L,M) with the above
prescribed structure is a K-linear additive tensor category [4, Definition
1.1]. Moreover, we can prove without difficulty that C(K,L,M) is rigid. It
has kernels and cokernels, but is not abelian (e.g. [8, Example 1.4]).

Remark 1.11. The above filtration is of Faltings-Rapoport type (cf. [6],
[9], and [1, §14.1]). The category C(K,L,M) is the inductive limit of the
categories n-FilL/K in [1, §14.1] with respect to the number n of filtrations.
The category n-FilL/K is in turn a mixed variant of the categories FilLK and
FilnK in [3, Definition 1.1.3 & Variant 1.1.5].

For an algebraic group G over K and for every v ∈M, we select a group
homomorphism κ(v) : Tv×K L→ G×K L of a torus Tv over K which splits
over L and an element e(v) of the coefficient extension R ⊗Z Y (v) of the
cocharacter group Y (v) over L of Tv in such a way that for except a finite
number of the indices v, we have e(v) = 0. With these data (G, κ, e) of an
algebraic group G, a family κ of group homomorphisms of tori to G, and a
family e of ‘cocharacters’, we can match each G-representation V over K
with an object of C(K,L,M) as follows.

The underlying vector space is V itself. For each v ∈M, we associate V
with the filtration V ·v defined by κ(v) and e(v) as before:

V i
v = V i

κ(v), e(v) (i ∈ R)
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A G-equivariant linear map between representation spaces obviously gives
a morphism in C(K,L,M). Thus we obtain a functor ιG,κ,e of the category
RepK(G) of finite dimensional representation spaces over K of G to the
category C(K,L,M):

RepK(G)
ιG,κ,e−→ C(K,L,M)

By Lemma 1.7, we see that the functor is a K-linear tensor functor [4,
Definition 1.8].

Now we recall a certain full tensor subcategory of C(K,L,M). Before
that, to make sure of definitions, we remember the slope and the semi-
stability of an object of C(K,L,M).

Definition 1.12 (slope). For a non-zero object V of C(K,L,M), the slope
µ(V ) is a real number given by

µ(V ) =
∑
v∈M

1
dimK V

∑
w∈R

w dimL grw (V ·v) ,

where gr· is the graduation derived from filtration. For later use, we write
µv for its partial sum with respect to the real index w:

µv(V ) = 1
dimK V

∑
w∈R

w dimL grw (V ·v)

Definition 1.13 (semi-stability). A non-zero object V is semi-stable if it
satisfies the condition that for any monomorphism W → V in C(K,L,M)
of a non-zero object W , we have µ(W ) ≤ µ(V ).

Remark 1.14. For V to be semi-stable, it is enough to meet the condition
for all the strict subobjects (kernels) of V . In fact, if the underlying linear
map of a morphism U → W is isomorphic, then we have µ(U) ≤ µ(W ) [8,
Lemma 1.8].

Remark 1.15. The slope in Definition 1.12 is a slope function [1, 3.1.1
Definition] and the slope filtration (Harder-Narasimhan filtration) exists
[1, 4.2.3 Theorem] (for a direct proof, see e.g. [3] or [5]).

Definition 1.16. The category Css
0 (K,L,M) is defined to be the full sub-

category of C(K,L,M) consisting of semi-stable objects of slope zero and
of zero objects.

Theorem 1.17 (Faltings [6], Totaro [13]). The category Css
0 (K,L,M) is

a rigid abelian K-linear tensor subcategory. The forgetful tensor functor
ωss

0 (K,L,M) of Css
0 (K,L,M) to the tensor category of finite dimen-

sional vector spaces over K is a fiber functor which makes the category
Css

0 (K,L,M) a neutral Tannakian category over K.
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Remark 1.18. In our previous paper [8], we have given a third proof that
Css

0 (K,L,M) is Tannakian when the base field K is a so-called number field
(and when some non-essential restriction is placed on the filtrations). As
noted earlier in the paper [13, Remark p. 88] of Totaro, we can prove the
fact over any base field using the method in the same paper of Totaro. A
detailed proof over an arbitrary base field is indicated in [3, Variant 1.2.13].
For another approach, see [6].

Prior to proceeding ahead, we record two auxiliary facts. One says that
the slope in Definition 1.12 is ‘determinantal’ [1, 8.2.1 Definition]:

Lemma 1.19. Let V be a non-zero object of C(K,L,M) and n = dimK V .
We denote by detV the n-th exterior product

∧n V with the quotient filtra-
tions of the n-times tensor product

⊗n V of V . We have for each v ∈M

µv(V ) = 1
dimK V

µv(detV ) .

Proof. See e.g. [3, Lemma 1.1.8 (iii)]. �

The other says that the functor ιG,κ,e sends a cokernel to a cokernel:

Lemma 1.20. Let V be a finite dimensional representation space over K
of G and let W be a G-stable subspace over K of V . The quotient filtration
over L on V/W as a strict quotient object (cokernel) of ιG,κ,e(V ) coincides
with the filtration of ιG,κ,e(V/W ), the vector space V/W being regarded as
a quotient G-representation over K.

Proof. A proof is indirectly contained in [3, Definition 4.2.6 (iv)]. It is read-
ily checked as follows.

Fix an index v ∈M. Let ũ1, . . . , ũd be a basis over L of L⊗KW such that
the torus Tv acts on Lũj by a character χ̃(j) via κ(v) : Tv ×K L→ G×K L
for each j = 1, . . . , d. Let u1, . . . , un−d be elements of L⊗K V such that Tv
acts on Lui by a character χ(i) via κ(v) for each i = 1, . . . , n− d and such
that together with ũ1, . . . , ũd they form a basis over L of L⊗K V .

By definition, we have

V q
v =

 ⊕
〈χ(i),e(v)〉≥q

Lui

⊕
 ⊕
〈χ̃(j),e(v)〉≥q

Lũj

 ,
hence

V q
v + L⊗K W =

 ⊕
〈χ(i),e(v)〉≥q

Lui

⊕ (L⊗K W ) .

Denote by ūi (i = 1, . . . , n− d) the image of ui through the quotient map

L⊗K V → L⊗K (V/W ).
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The family ū1, . . . , ūn−d is a basis over L of L⊗K (V/W ) such that Tv acts
on Lūi by the character χ(i). Hence

(V/W )qv =
⊕

〈χ(i),e(v)〉≥q
Lūi.

This is the same as (V q
v + L⊗K W ) /L ⊗K W , which is the q-th subspace

of L⊗K (V/W ) as a strict quotient of V ·v . �

Remark 1.21. As is easily seen, the functor ιG,κ,e also sends a kernel to a
kernel.

2. Definition of a group
We define a linear algebraic group one of whose representation leads to

a classical Roth system (of linear inequalities). The relation of the group
to the classical Roth system is described in Section 3.

Let K be an arbitrary field and u, t, si j (i, j = 1, 2) indeterminates. We
consider si j the coefficient in the i-th row and the j-th column of a matrix of
degree two. We denote respectively by Ga,Gm, and SL2 an additive group
Spec (K[u]), a multiplicative group Spec

(
K
[
t, t−1]), and a special linear

group Spec
(
K[si j ]

/
(1− det (si j))

)
of degree two.

Let L be a (finite or infinite) Galois extension field of K, α ∈ L \
K, and σ ∈ Gal(L/K) such that σ(α) 6= α. Let e, λ+, λ− be embeddings
defined over L respectively of Gm,Ga,Ga into SL2 given using the usual
identifications Gm(R) ' R× and Ga(R) ' R for a K-algebra R by

e(c) =
(

α β
−1 −1

)(
c 0
0 c−1

)(
α β
−1 −1

)−1
(c ∈ R×),

λ+(c) =
(

α β
−1 −1

)(
1 c
0 1

)(
α β
−1 −1

)−1
(c ∈ R),

λ−(c) =
(

α β
−1 −1

)(
1 0
c 1

)(
α β
−1 −1

)−1
(c ∈ R),

where β = σ−1(α). We denote respectively by Tα,σ;U+;U− the subgroups
over L of SL2 which are the images of e;λ+;λ−. Denoting by li j (i, j = 1, 2)
the linear forms in si j given as

(li j) =
(

α β
−1 −1

)−1
(si j)

(
α β
−1 −1

)
,

we have the subgroup Tα,σ as an affine subvariety over L of SL2 which
corresponds to the ideal in L [si j ] generated by

1− l1 1 l2 2, l1 2, l2 1.
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The group U+ corresponds to the ideal generated by
1− l1 1, 1− l2 2, l2 1

and U− corresponds to the ideal generated by
1− l1 1, 1− l2 2, l1 2.

The image of the Galois conjugate σ(e) of the embedding e of Gm into
SL2 is the base change of Tα,σ by σ. We denote it by σ(Tα,σ):

Gm ×K L
e−−−−→ Tα,σ ⊂ SL2×KLyσ yσ

Gm ×K L
σ(e)−−−−→ σ(Tα,σ) ⊂ SL2×KL

Since the homomorphism σ(e) is given by

σ(e)(c) =
(
σ(α) σ(β)
−1 −1

)(
c 0
0 c−1

)(
σ(α) σ(β)
−1 −1

)−1
(c ∈ R),

the subgroup σ(Tα,σ) of SL2 corresponds to the ideal in L [si j ] generated
by

1− σ (l1 1) σ (l2 2) , σ (l1 2) , σ (l2 1) .
We use symbols σ(U−), σ−1(Tα,σ), τ(Tα,σ) (τ ∈ Gal(L/K)) and so forth
in the same way.
Lemma 2.1. σ (U−) = U+

Proof. We have by the definition of β(
α β
−1 −1

)−1 (
σ(α) σ(β)
−1 −1

)
= 1
β − α

(
−1 −β

1 α

)(
σ(α) σ(β)
−1 −1

)
= 1
β − α

(
−σ(α) + β −σ(β) + β
σ(α)− α σ(β)− α

)

=


−σ(α) + σ−1(α)
σ−1(α)− α 1

σ(α)− α
σ−1(α)− α 0

 .
Putting

γ = σ−1(α)− σ(α)
σ−1(α)− α , δ = σ(α)− α

σ−1(α)− α,

we can rewrite the above expression as(
α β
−1 −1

)−1 (
σ(α) σ(β)
−1 −1

)
=
(
γ 1
δ 0

)
=
(

1 γ
0 δ

)(
0 1
1 0

)
.
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We see that(
α β
−1 −1

)−1 (
σ(α) σ(β)
−1 −1

)(
1 0
u 1

)
·
(
σ(α) σ(β)
−1 −1

)−1 (
α β
−1 −1

)

=
(

1 γ
0 δ

)(
0 1
1 0

)(
1 0
u 1

)((
α β
−1 −1

)−1 (
σ(α) σ(β)
−1 −1

))−1

=
(

1 γ
0 δ

)(
u 1
1 0

)(
0 1
1 0

)(
1 −γδ−1

0 δ−1

)
=
(

1 0
0 δ

)(
1 γ
0 1

)(
1 u
0 1

)(
1 −γ
0 1

)(
1 0
0 δ−1

)
=
(

1 0
0 δ

)(
1 u
0 1

)(
1 0
0 δ−1

)
=
(

1 δ−1u
0 1

)
.

Hence (
σ(α) σ(β)
−1 −1

)(
1 0
u 1

)(
σ(α) σ(β)
−1 −1

)−1

=
(

α β
−1 −1

)(
1 δ−1u
0 1

)(
α β
−1 −1

)−1
,

which shows the claim. �

Let γ and δ be the elements of L defined in the proof of Lemma 2.1 and
let A be an L-valued point of U+ given by

A =
(

α β
−1 −1

)(
1 −γδ−1

0 1

)(
α β
−1 −1

)−1
.

Lemma 2.2. The relations

(2.1) σ(e) = Int
(
A−1

)
◦ e ◦ (inverse in Gm) ,

(2.2) e = Int (A) ◦ σ(e) ◦ (inverse in Gm) ,

and

σ (Tα,σU−) = Tα,σU+
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hold, where the symbol Int is the (left) conjugation action in SL2. As a
diagram, we have the following:

Gm ×K L
e−−−−→ Tα,σU+

·−1
y xInt(A)

Gm ×K L
σ(e)−−−−→ σ (Tα,σU−)

Proof. With the same notation as in the proof of Lemma 2.1, we see that(
α β
−1 −1

)−1 (
σ(α) σ(β)
−1 −1

)(
t 0
0 t−1

)
·
(
σ(α) σ(β)
−1 −1

)−1 (
α β
−1 −1

)
=
(

1 γ
0 δ

)(
0 1
1 0

)(
t 0
0 t−1

)(
0 1
1 0

)(
1 −γδ−1

0 δ−1

)
=
(

1 γδ−1

0 1

)(
1 0
0 δ

)(
t−1 0
0 t

)(
1 0
0 δ−1

)(
1 −γδ−1

0 1

)
=
(

1 γδ−1

0 1

)(
t−1 0
0 t

)(
1 −γδ−1

0 1

)
.

This implies the relation (2.1), equivalently the relation (2.2), and in par-
ticular that

σ (Tα,σ) ⊂ Tα,σU+

and
Tα,σ ⊂ σ (Tα,σ)U+ = σ (Tα,σ)σ (U−) = σ (Tα,σU−) .

�

Let X be the character group of the torus Tα,σ. For any character φ of
Tα,σ, we write σ(φ) for the homomorphism determined by the following
diagram:

Gm ×K L
e−−−−→ Tα,σ

φ−−−−→ Gm ×K Lyσ yσ yσ
Gm ×K L

σ(e)−−−−→ σ(Tα,σ) σ(φ)−−−−→ Gm ×K L

The map σ(φ) is a character of a base change σ(Tα,σ) of the torus Tα,σ.
Denoting in general by 〈·, ·〉 the canonical Z-valued pairing between a char-
acter and a cocharacter of a torus, we see that

〈φ, e〉 = 〈σ(φ), σ(e)〉 for all φ ∈ X.

We write σ(X) for the character group of the torus σ(Tα,σ).
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Let χ be a generator of X determined by

χ ◦ e = (identity of Gm) .

We have
1 = 〈χ, e〉 = 〈σ(χ), σ(e)〉.

The character σ(χ) is a generator of σ(X) such that

σ(χ) ◦ σ(e) = (identity of Gm) .

Since (
t 0
0 t−1

)(
1 0
u 1

)(
t−1 0
0 t

)
=
(

1 0
t−2u 1

)
,

the group U− is the unipotent subgroup over L of SL2 which corresponds
to the character (−2)χ (additive notation) of the maximal torus Tα,σ.

Lemma 2.3. When σ2(α) 6= α, the tori Tα,σ and σ(Tα,σ) generate a Borel
subgroup Tα,σU+ = σ (Tα,σU−) of SL2×KL.

Proof. For an algebraic closure L̄ of L and c ∈ L̄× = L̄ \ {0}, let B and
C be L̄-valued points respectively of Tα,σ and σ(Tα,σ) determined by the
matrices

B =
(

α β
−1 −1

)(
c 0
0 c−1

)(
α β
−1 −1

)−1

and

C =
(
σ(α) σ(β)
−1 −1

)(
c 0
0 c−1

)(
σ(α) σ(β)
−1 −1

)−1
.

From the relation (2.1), we see that

C = A−1B−1A.

We have on the other hand

BA−1B−1

=
(

α β
−1 −1

)(
c 0
0 c−1

)(
1 γδ−1

0 1

)(
c−1 0
0 c

)(
α β
−1 −1

)−1

=
(

α β
−1 −1

)(
1 c2γδ−1

0 1

)(
α β
−1 −1

)−1

and

B−1A−1B =
(

α β
−1 −1

)(
1 c−2γδ−1

0 1

)(
α β
−1 −1

)−1
.
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We obtain
BCB−1C−1 =

(
BA−1B−1

)
A
(
B−1A−1B

)
A

=
(

α β
−1 −1

)(
1 c2γδ−1

0 1

)(
1 −γδ−1

0 1

)
·
(

1 c−2γδ−1

0 1

)(
1 −γδ−1

0 1

)(
α β
−1 −1

)−1

=
(

α β
−1 −1

)(
1
(
c− c−1)2 γδ−1

0 1

)(
α β
−1 −1

)−1
.

Thus the commutator group of Tα,σ with σ (Tα,σ) contains the unipotent
group U+ = σ (U−). �

Corollary 2.4. The special linear group SL2×KL is generated by the three
tori σ−1(Tα,σ), Tα,σ, and σ(Tα,σ) if σ2(α) 6= α.

Proof. Applying σ−1 respectively to Tα,σ, σ(Tα,σ), and Tα,σU+ =
σ (Tα,σU−), we see that when σ2(α) 6= α, the tori σ−1(Tα,σ) and Tα,σ
generate a Borel subgroup σ−1 (Tα,σU+) = Tα,σU− of SL2×KL. Since
SL2×KL is generated by U+ and U−, the conclusion holds. �

When σ2(α) = α, that is, when γ = 0, the L-valued point A of SL2
equals the neutral element given by the identity matrix, hence we get Tα,σ =
σ(Tα,σ). In this case, the torus Tα,σ is defined over the fixed field of σ ∈
Gal(L/K). We calculate its defining equation.

To ease notation, we put(
p q
r s

)
=
(
s1 1 s1 2
s2 1 s2 2

)
.

Lemma 2.5. The torus Tα,σ is naturally identified with a one-dimensional
torus

Spec
(
L[r, s]

/ (
1− (αr − s)

(
σ−1(α)r − s

)))
,

the function αr − s being considered a generator of its character group.
When σ2(α) = α, letting N be the Galois closure of the field generated

by α over K and k the fixed field of σ in N , the torus Tα,σ is defined and
anisotropic over k.

Proof. The latter part is immediate from the former one. The torus Tα,σ
is anisotropic, for otherwise the character αr − s became rational over K,
hence α ∈ K. We give the proof of the former part.

By the definition of linear forms li j , we have(
p q
r s

)(
α β
−1 −1

)
=
(

α β
−1 −1

)(
l1 1 l1 2
l2 1 l2 2

)
.
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On the congruence l1 2 ≡ l2 1 ≡ 0, we see(
p q

) ( α β
−1 −1

)
≡
(
α β

) ( l1 1 0
0 l2 2

)
≡
(
l1 1 l2 2

) ( α 0
0 β

)
and (

r s
) ( α β
−1 −1

)
≡
(
−1 −1

) ( l1 1 0
0 l2 2

)
≡
(
l1 1 l2 2

)
(−1).

We get

(
p q

)
≡
(
l1 1 l2 2

) ( α 0
0 β

)(
α β
−1 −1

)−1

≡
(
r s

) ( α β
−1 −1

)(
−α 0
0 −β

)(
α β
−1 −1

)−1

≡
(
r s

) ( −α2 −β2

α β

)(
α β
−1 −1

)−1

≡
(
r s

) ( −α2 −β2

α β

)(
−1 −β

1 α

) 1
β − α

≡
(
r s

) ( −(α+ β) −αβ
1 0

)
and (

l1 1 l2 2
)
≡
(
r s

) ( α β
−1 −1

)
(−1)

≡
(
αr − s βr − s

)
(−1).

Hence we obtain in particular

l1 1 l2 2 ≡ (αr − s)(βr − s) = (αr − s)
(
σ−1(α)r − s

)
.

Since the ideal of Tα,σ is generated by l1 2, l2 1, 1 − l1 1 l2 2, we see the
result. �

Remark 2.6. On the torus Tα,σ, the functions p = s1 1 and q = s1 2 are
respectively identified with s−

(
α+ σ−1(α)

)
r and −ασ−1(α)r, which are

seen (or have been seen) in the proof of Lemma 2.5.

Definition 2.7 (group leading to the Roth inequality). We denote by Ğ
the group closure of the union of Galois conjugates τ(Tα,σ) (τ ∈Gal(L/K))
in SL2×KL.
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Remark 2.8. The group Ğ is the Zariski closure of the group generated
by τ(Tα,σ) (τ ∈ Gal(L/K)) and defined over the base field K [2, 2.1].

As we know, when σ2(α) 6= α, we have Ğ = SL2. When α is quadratic
over K, we see from Lemma 2.5 that Ğ is a one-dimensional anisotropic
torus over K. In Section 4, we shall explicitly determine the group Ğ in
another case.

3. Representation of the group
We associate with filtrations as in Section 1 the representation spaces

of the group defined in Section 2. We prove that a filtered homomorphism
between them is nothing but an equivariant homomorphism between the
representation spaces. We also prove that the associated filtrations are semi-
stable of slope zero. Thus the tensor category of finite dimensional represen-
tations of the group defined in Section 2 is identified with a full subcategory
of the tensor category of vector spaces with semi-stable filtrations of slope
zero. The filtered vector space derived from a classical Roth system is
regarded as a representation space of the group in such a way.

In this section, we assume that the index set M consists of a single
element, say ∞: M = {∞}. In addition, we omit the subscript v =∞ and
the index set M from the symbols for simplicity.

To the triple of the group Ğ, the inclusion map κ = incl : Tα,σ ↪→ Ğ×KL,
and the cocharacter e : Gm ×K L→ Tα,σ given in Section 2, apply the con-
struction of the tensor functor ιĞ,κ,e : RepK(Ğ) → C(K,L) = C(K,L,M)
in Section 1. Recall that for a finite dimensional representation space V
over K of Ğ, we have defined a filtration over L of ιĞ,κ,e(V ) as

V i = V i
∞ = V i

κ,e =
⊕
〈φ,e〉≥i

Vφ (i ∈ R) ,

where Vφ is the subspace over L of L⊗K V on which Tα,σ acts by multipli-
cation of a character φ via the map κ = incl.

Example 3.1 (representation corresponding to a classical Roth system).
Put r = s2 1 and s = s2 2. The indeterminate s2 1 or s2 2 is a function on
SL2 defined as the matrix coefficient either in the second row and the first
column or in the second row and the second column as in Section 2. Let V̆
be the vector space generated by r and s over K in the ring of functions
over K on SL2. By right translation of SL2, the vector space V̆ becomes
a representation space of Ğ, which is a closed subgroup of SL2. Since the
action of the torus Tα,σ is given by for c ∈ R× ' Tα,σ(R)

(
r s

)
7−→

(
r s

) ( α β
−1 −1

)(
c 0
0 c−1

)(
α β
−1 −1

)−1
,
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where R is a K-algebra and β = σ−1(α), we see that

V̆χ = L(αr − s)

and
V̆−χ = L(βr − s) = L

(
σ−1(α)r − s

)
.

The character χ is the same χ as the one in Section 2 such that 〈χ, e〉 = 1.
Hence the filtration of V̆ is defined as

F iαV̆ =


L⊗K V̆ for i ≤ −1
L(αr − s) for − 1 < i ≤ 1

0 for i > 1.

This is the filtration derived from a classical Roth system. Note that the
filtration F ·αV̆ does not depend on the choice of the element σ ∈ Gal(L/K).

For an L-valued point g of Tα,σ, recall that its Galois conjugate σ(g)
by σ ∈ Gal(L/K) is an L-valued point of the base change σ(Tα,σ):

SpecL g−−−−→ Tα,σyσ yσ
SpecL σ(g)−−−−→ σ(Tα,σ)

If x is an element of Vφ, then by definition

gx = φ(g)x.

Since the representation in GL(V ) of Ğ is defined over K and the action of
Gal(L/K) on L⊗K V is induced from the action on the coefficient field L,
we have

σ(g)σ(x) = σ(gx) = σ (φ(g)x)
= σ (φ(g))σ(x)
= σ(φ) (σ(g))σ(x).

This says that the Galois conjugate σ (Vφ) equals the L-vector space Vσ(φ)
on which σ(Tα,σ) acts by multiplication of a character σ(φ):

(3.1) σ (Vφ) = Vσ(φ)

We introduce a useful quantity.

Definition 3.2. For a non-zero element x of L⊗K V , let

m(x) = max
{
i
∣∣ V i 3 x

}
and m(0) = +∞.
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From the definition, we see immediately that
m(x+ y) ≥ min {m(x),m(y)}

and that if m(x) 6= m(y), then
m(x+ y) = min {m(x),m(y)} .

Proposition 3.3. We have
m (σ(x)) = −〈φ, e〉 for any x ∈ Vφ \ {0},

where σ is the element of Gal(L/K) used to define the torus Tα,σ in Sec-
tion 2.

Proof. First, we assume that σ2(α) 6= α. We know that Ğ = SL2. As
we have seen in Section 2, a unipotent subgroup U− corresponds to the
character (−2)χ of the maximal torus Tα,σ, where χ is the character such
that 〈χ, e〉 = 1. As is well-known, the group U− sends an element x of Vφ to
an affine space x+

⊕
k∈Z,k>0 Vφ+(−2)kχ. Applying σ ∈ Gal(L/K), we have

σ(U−)(L) σ(x) ⊂ σ(x) +
⊕

k∈Z,k>0
Vσ(φ)+(−2)k σ(χ).

In particular, for the L-valued point A of σ (U−) in Section 2, we get an
expression

A−1σ(x) = σ(x) +
∑

k∈Z,k>0
σ(xk) , xk ∈ Vφ+(−2)kχ.

We identify c ∈ L× = L \ {0} with an L-valued point of Gm given in terms
of pullback of functions by

K
[
t, t−1

]
3 t 7→ c.

Let w = 〈σ(φ), σ(e)〉, which is equal to 〈φ, e〉. We have(
σ(e)

(
c−1

)
A−1

)
σ(x) = σ(e)

(
c−1

) (
A−1σ(x)

)
=
(
c−1

)〈σ(φ),σ(e)〉
σ(x) +

∑
k∈Z,k>0

(
c−1

)〈σ(φ)+(−2)k σ(χ),σ(e)〉
σ (xk)

= c−wσ(x) +
∑

k∈Z,k>0
c−w+2kσ (xk) .

From the relation (2.2) between e and σ(e) in Section 2, we obtain

e(c)σ(x) =
(
Aσ(e)

(
c−1

)
A−1

)
σ(x)

= A
(
σ(e)

(
c−1

)
A−1σ(x)

)
= c−wAσ(x) +

∑
k∈Z,k>0

c−w+2kAσ (xk) .
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Since Aσ(x) 6= 0 if x 6= 0, this means that

σ(x) ∈ V −w and σ(x) 6∈ V i (i > −w),

hence
m (σ(x)) = −w = −〈φ, e〉.

Next, assume that σ2(α) = α. In this case, the L-valued point A equals
the identity, hence we know by the relation (2.2)

e = σ(e) ◦ (inverse in Gm) .

Using the same notation as above, we have

e(c)σ(x) = σ(e)
(
c−1

)
σ(x)

=
(
c−1

)〈σ(φ),σ(e)〉
σ(x) = c−wσ(x).

Thus we get the same conclusion as in the first case. �

Lemma 3.4. Any one-dimensional representation defined over K of Ğ is
trivial.

Proof. Let V be a one-dimensional representation space over K of Ğ. The
torus Tα,σ acts on L⊗K V via a character φ, in other words, L⊗K V = Vφ.
We have

m(x) = 〈φ, e〉 for all x ∈ L⊗K V \ {0}.
Since σ (L⊗K V ) = L⊗K V , we get from Proposition 3.3 that

m(x) = −〈φ, e〉 for all x ∈ L⊗K V \ {0}.

This forces φ = 0.
For an L-valued point g of Tα,σ, τ ∈ Gal(L/K), and x ∈ L⊗K V , we see

that

τ(g)x = τ(g) τ
(
τ−1(x)

)
= τ

(
g τ−1(x)

)
= τ

(
τ−1(x)

)
= x.

This means that the base change τ(Tα,σ) of the torus Tα,σ is contained in
the stabilizer of any element of L⊗K V . Hence Ğ itself is the stabilizer, that
is, the group Ğ acts trivially on V , for τ(Tα,σ) (τ ∈ Gal(L/K)) generate a
dense subgroup of Ğ and stabilizers are closed in general. �

Lemma 3.5. For any finite dimensional non-zero representation space V
over K of Ğ, we have µ(ιĞ,κ,e(V )) = µ∞(ιĞ,κ,e(V )) = 0.
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Proof. Once we know Ğ is reductive, Lemma 3.4 says that Ğ has anisotropic
center (cf. the discussion at the beginning of [3, Chapter V]), so we can
resort to [3, Remark 5.1.3]. In general, we are able to prove our present
lemma as follows. The essence of the following proof is the same as the
essence of the proof of [3, Remark 5.1.3].

Let n be the dimension over K of V . From Lemma 1.19 and Lemma 1.20,
we see

µ(ιĞ,κ,e(V )) = 1
n
µ(det ιĞ,κ,e(V ))

= 1
n
µ

(
Coker

(
ιĞ,κ,e(W )→ ιĞ,κ,e

(
n⊗
V

)))

= 1
n
µ

(
ιĞ,κ,e

(
n∧
V

))
.

Here W in the second line of the displayed expression is an appropriate
Ğ-stable subspace of

⊗n V . Due to Lemma 3.4, the action of Ğ is trivial on
the one-dimensional representation space

∧n V over K. By the definition
of filtration on representation spaces, we have(

n∧
V

)i
=
{
L⊗K (

∧n V ) (i ≤ 0)
0 (i > 0),

hence the result. �

Lemma 3.6. To an arbitrary one-dimensional vector subspace W over
K of a Ğ-representation V over K, attach the sub-filtration over L of
ιĞ,κ,e(V ). We have µ(W ) ≤ 0.

Proof. In the coefficient extension L ⊗K V , a non-zero vector w ∈ W is
written

w = w1 + · · ·+ wr, wi ∈ Vψ(i) \ {0},
where Vψ(i) is as in Section 2 the subspace over L of L⊗K V on which the
torus Tα,σ acts via a character ψ(i). We may assume that the characters
ψ(i) are pairwise distinct. By the definition of the sub-filtration and the
quantity m(·) in Definition 3.2, we have

µ(W ) = m(w) = min
1≤i≤r

〈ψ(i), e〉 .

Applying σ ∈ Gal(L/K), we also have

w = σ (w1) + · · ·+ σ (wr) .

From Proposition 3.3, we see that

m (σ (wi)) = −〈ψ(i), e〉 .
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We get
m(w) = m (σ (w1) + · · ·+ σ (wr))

= min
1≤i≤r

m (σ (wi))

= − max
1≤i≤r

〈ψ(i), e〉 .

This is possible only when 0 ≥ m(w) = µ(W ). �

Proposition 3.7. For any finite dimensional representation space V over
K of Ğ, the filtered vector space ιĞ,κ,e(V ) is semi-stable of slope zero, hence
the functor ιĞ,κ,e factors through Css

0 (K,L) = Css
0 (K,L,M).

Proof. We are going to prove that for any non-zero vector subspaceW over
K of V with the sub-filtration of ιĞ,κ,e(V ), we have µ(W ) ≤ 0.

Let d = dimKW . When we consider
⊗dW the d-times tensor product

in C(K,L), the natural map
d⊗
W →

d⊗
ιĞ,κ,e(V ) ' ιĞ,κ,e

(
d⊗
V

)
is of course a morphism in C(K,L). By the definition of quotient filtration
and by Lemma 1.20, the induced map

f : detW →
d∧
ιĞ,κ,e(V ) ' ιĞ,κ,e

(
d∧
V

)
is also a morphism in C(K,L). Since the underlying linear map of the
morphism

detW → Im f

is an isomorphism, we have µ(detW ) ≤ µ(Im f). (See e.g. [8, Lemma 1.8]. In
our present case, we can prove that detW ' Im f .) Thanks to Lemma 1.19
and Lemma 3.6, we obtain

µ(W ) = 1
d
µ(detW ) ≤ 1

d
µ(Im f) ≤ 0.

�

Let V and W be the underlying vector spaces over K of objects in
C(K,L). Remember that a linear map f over K of V to W is filtered if
and only if

f
(
V i
)
⊂W i

for all i ∈ R. In terms of the quantity m(·), the map f is filtered if and only
if

m(x) ≤ m (f(x))
for all x ∈ L⊗K V .
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Theorem 3.8. The functor ιĞ,κ,e : RepK(Ğ)→ Css
0 (K,L) is fully faithful.

Proof. Let f : V → W be a filtered linear map over K between finite di-
mensional representation spaces. Take any x ∈ Vφ \ {0}. We know from
Proposition 3.3 that

m (σ(x)) = −〈φ, e〉.
We have an expression

f(x) =
∑
ψ∈X

yψ, yψ ∈Wψ,

where X is the character group of the torus Tα,σ. On the assumption that
f is filtered, we have

yψ = 0 if 〈ψ, e〉 < 〈φ, e〉.
Suppose that f(x) 6= 0 and let

M = max
{
〈ψ, e〉

∣∣ yψ 6= 0
}
.

We see that
M ≥ 〈φ, e〉.

Since we have by Proposition 3.3
m (σ (yψ)) = −〈ψ, e〉

for yψ 6= 0, we get

m (σ (f(x))) = m

∑
ψ∈X

σ (yψ)

 = min
{
m (σ (yψ))

∣∣ yψ 6= 0
}

= min
{
−〈ψ, e〉

∣∣ yψ 6= 0
}

= −max
{
〈ψ, e〉

∣∣ yψ 6= 0
}

= −M.

Thus we obtain
−〈φ, e〉 = m (σ(x))

≤ m (f (σ(x))) = m (σ (f(x))) = −M,

hence
M ≤ 〈φ, e〉,

for f is filtered and defined over K. Consequently, we see that M = 〈φ, e〉.
Thus

yψ = 0 if 〈ψ, e〉 > 〈φ, e〉.
This implies that

f(x) = yφ ∈ Wφ for all x ∈ Vφ,
that is, that the map f commutes with the action of Tα,σ. Since f is
defined over K, the map commutes with all Galois conjugates τ(Tα,σ)
(τ ∈ Gal(L/K)), and so with Ğ. �
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4. The group in characteristic zero
We shall determine an explicit form of the group defined in Section 2

when the characteristic of the base field is zero, using the one-to-one cor-
respondence between Lie algebras and Lie groups.

We calculate the Lie algebra tα,σ of the torus Tα,σ defined in Section 2
as a subalgebra of the Lie algebra sl2 of the special linear group SL2 of
degree two. We identify the Lie algebra gl2 of the general linear group GL2
of degree two with the Lie algebra of all matrices of degree two and regard
sl2 as the subalgebra of trace zero. The element of gl2 defined as the partial
differentiation by si j at the unity as one of the coordinate functions (si j)i,j
on GL2 is identified with the matrix with the coefficient in the i-th row and
the j-th column one and with the others zero.

Lemma 4.1. The Lie algebra tα,σ of Tα,σ is the one-dimensional subspace
of sl2 generated by the element(

−
(
α+ σ−1(α)

)
−2ασ−1(α)

2 α+ σ−1(α)

)
.

Proof. Recall that the pullbacks of functions si j on SL2 (or GL2) by the
morphism e : Gm ×K L → Tα,σ ↪→ SL2×KL (↪→ GL2×KL) are written in
matrix notation

(e∗si j) =
(

α β
−1 −1

)(
t 0
0 t−1

)(
α β
−1 −1

)−1
,

where β = σ−1(α). Differentiating by t, we have(
d

dt
e∗si j

)
=
(

α β
−1 −1

)(
1 0
0 −t−2

)(
α β
−1 −1

)−1
.

By calculation, we get(
α β
−1 −1

)(
1 0
0 −1

)(
α β
−1 −1

)−1

=
(

α −β
−1 1

)(
−1 −β

1 α

) 1
β − α

=
(
−α− β −2αβ

2 β + α

) 1
β − α

=
(
−
(
α+ σ−1(α)

)
−2ασ−1(α)

2 α+ σ−1(α)

) 1
σ−1(α)− α.

�

We see similarly the following:
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Corollary 4.2. For any τ ∈ Gal(L/K), the Lie algebra of the torus τ(Tα,σ)
is the one-dimensional subspace of sl2 generated by the element(

−τ
(
α+ σ−1(α)

)
−2τ

(
ασ−1(α)

)
2 τ

(
α+ σ−1(α)

) ) ,
which is just the Galois conjugate τ(tα,σ) in sl2 of the subalgebra tα,σ.

To determine the Lie algebra ğ of the group Ğ defined in Section 2 as the
group closure of the union of τ(Tα,σ) (τ ∈ Gal(L/K)), put for an element
τ of Gal(L/K)

a = α+ σ−1(α), b = ασ−1(α), c = τ(a), d = τ(b)
and set (

−a −2b
2 a

)
= Z ∈ tα,σ,

(
−c −2d

2 c

)
= W ∈ τ(tα,σ) .

We have as a (simple) product of matrices(
−a −2b

2 a

)(
−c −2d

2 c

)
=
(
ac− 4b 2ad− 2bc
2a− 2c ac− 4d

)
,

so we get as a bracket product[(
−a −2b

2 a

)
,

(
−c −2d

2 c

)]
=
(

4(d− b) 4(ad− bc)
4(a− c) 4(b− d)

)
.

Hence we obtain(
−(d− b) bc− ad
c− a d− b

)
= −1

4 [Z,W ] ∈ ğ.

We see that the dimension of the Lie algebra ğ of the group Ğ is at least
the rank of the matrix

D =

 2 a −2b
2 c −2d

c− a d− b bc− ad

 .
We calculate its determinant.

Adding a half of a times the second row to the third row and subtracting
a half of c times the first row from the third row, we have

detD = det

 2 a −2b
2 c −2d
0 d− b 2(bc− ad)

 .
Subtracting the first row from the second row, we get

detD = det

 2 a −2b
0 c− a 2(b− d)
0 d− b 2(bc− ad)

 .
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Thus we obtain
1
4 detD = (c− a)(bc− ad) + (d− b)2

= (τ(a)− a) (bτ(a)− aτ(b)) + (τ(b)− b)2 .

Lemma 4.3. On the assumption that ω2(α) = α for every ω ∈ Gal(L/K),
the Galois closure N of the field generated by α over K is a finite abelian
extension of K. Non-trivial elements of Gal(N/K) are all of order two.

Proof. It is sufficient to prove that for any τ and ω ∈ Gal(L/K), we have
ω2τ(α) = τ(α), for it is easily seen (or well-known) that any group whose
elements are all of order two is abelian. On our assumption, we see that

ω2τ(α) = τ
(
τ−1ω2τ

)
(α) = τ

(
τ−1ωτ

)2
(α) = τ(α).

�

Lemma 4.4. On the assumption that ω2(α) = α for any ω ∈ Gal(L/K)
and that α is not quadratic over K, we have Ğ = SL2.

Proof. If τ(a) = a and τ(b) = b for all τ ∈ Gal(L/K), then a = α+ σ−1(α)
and b = ασ−1(α) would belong to the base field K, hence α must have
been quadratic over K. Fix an element τ of Gal(L/K) such that τ(a) 6= a
or τ(b) 6= b.

When τ(a) = a, we have τ(b) 6= b. We see that

detD = 4 (τ(b)− b)2 6= 0,

so 3 ≤ dim ğ ≤ dim sl2 = 3. This implies that Ğ = SL2.
When τ(a) 6= a, let N be the Galois closure of the field generated by α

over K. We denote by k the fixed field of σ in N . We also denote by K̃ the
fixed field of σ and τ in N . By Lemma 4.3, the extension k/K̃ is quadratic.
Since a belongs to k, we have in particular

k = K̃ ⊕ K̃a.

Write b = ξ + ηa (ξ, η ∈ K̃). We see

τ(b)− b = (ξ + ητ(a))− (ξ + ηa)
= η (τ(a)− a)

and
bτ(a)− aτ(b) = ξτ(a) + ηaτ(a)− aξ − aητ(a)

= ξ (τ(a)− a) ,
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hence

1
4 detD = (τ(a)− a) (bτ(a)− aτ(b)) + (τ(b)− b)2

= ξ (τ(a)− a)2 + η2 (τ(a)− a)2

=
(
ξ + η2

)
(τ(a)− a)2 .

So, when τ(a) 6= a, if detD = 0, then we would have ξ+η2 = 0. If ξ+η2 = 0,
then we would get

a2 − 4b = a2 − 4ξ − 4ηa = a2 + 4η2 − 4ηa = (a− 2η)2.

We would obtain

α = a+
√

(a− 2η)2

2 = a− η or η,

in either case α had to be in k. This is a contradiction. �

Theorem 4.5. If the base field K is of characteristic zero, then the filtered
vector space

(
V̆ , F ·αV̆

)
in Example 3.1 (derived from a classical Roth sys-

tem) is in the image of a fully faithful tensor functor of the category of finite
dimensional representation spaces over K of a one-dimensional anisotropic
torus over K or SL2 according as the coefficient α is quadratic over K or
not, the functor being compatible with the forgetful tensor functors to VecK .

Proof. When the number α is quadratic over K, we have already seen in
Section 2 that the conclusion holds. When α is not quadratic over K and
if there is an element σ ∈ Gal(L/K) such that σ2(α) 6= α, then we have
a chance to choose such an element σ defining the group Ğ in Section 2.
With such a choice, we know that the result has been obtained in Section 2.
When α is not quadratic over K and if ω2(α) = α for all ω ∈ Gal(L/K),
then we have confirmed in Lemma 4.4 that the group Ğ is identical to SL2,
hence we are done. �

Appendix A. Notes on the representation of algebraic groups
that are generated by tori

In this appendix, we investigate the way how the category of finite di-
mensional representations of an algebraic group can be realized as a full
tensor subcategory of a category of vector spaces with semi-stable multiple
filtrations of slope zero, using tori and morphisms of tori defined over the
base field.
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A.1. Anisotropic torus. When the group considered is an anisotropic
torus which splits over the extension field, we prove that the functor defined
in Section 1 factors through the full subcategory of semi-stable objects of
slope zero. Moreover, in certain circumstances, the functor is fully faithful.

Let K,L,M be as in Section 1 throughout Section A. Let G = T be an
anisotropic torus over K which splits over L. The maps κ(v) (v ∈ M) are
all defined to be the identity of T : κ(v) = idT ×K L. We denote respectively
by X and by Y the character group and the cocharacter group over L of
T . The canonical Z-valued pairing between elements of X and those of Y
is denoted by 〈·, ·〉. We extend it bi-linearly to an R-valued pairing between
elements of R⊗ZX and R⊗ZY . Note that we have a natural diagonal action
of Gal(L/K) on X×ZY and that the value of the pairing is invariant under
the action.

Choose a function e of M to R⊗Z Y such that for except a finite number
of v ∈ M, we have e(v) = 0. Let V be a finite dimensional representation
space over K of T . We have a direct sum decomposition

L⊗K V =
⊕
χ∈X

Vχ,

where Vχ is the vector space over L on which T ×K L acts by multiplication
of a character χ. When we associate V with a family of filtrations V ·v =
V ·id,e(v) as in Section 1 defined by the cocharacter e(v) for each v ∈M, we
have

V i
v =

⊕
〈χ,e(v)〉≥i

Vχ (i ∈ R, v ∈M).

Lemma A.1. We have µv(ιT,id,e(V )) = 0 for any non-zero representation
space V over K of T and for each v ∈M, in particular, µ(ιT,id,e(V )) = 0.
Proof. Lemma A.1 is a special case of [3, Remark 5.1.3]. A direct proof goes
as follows.

Let n be the dimension over K of V . Since T is anisotropic over K, its
action is trivial on the one-dimensional representation space

∧n V over K.
Hence the same proof as that of Lemma 3.5 applies. �

Remark A.2. Compare with the sophisticated definition of slope in the book
[3, Definition 5.1.1], where the anisotropic part of a maximal torus is not
taken into account from the beginning.
Lemma A.3. To an arbitrary one-dimensional vector subspace W over
K of a T -representation V over K, attach the sub-filtration over L of
ιT,id,e(V ). We have µv(W ) ≤ 0 for each v ∈M, in particular, µ(W ) ≤ 0.
Proof. Let u be a non-zero element of W . We have an expression

u =
∑
χ∈X

uχ, uχ ∈ Vχ.
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Making σ ∈ Gal(L/K) act on both sides, we get

u =
∑
χ∈X

σ (uχ) .

We know σ (uχ) ∈ Vσ(χ) (cf. (3.1) in Section 3). By uniqueness of the
decomposition into the elements of subspaces Vχ, we obtain

σ (uχ) = uσ(χ) (χ ∈ X, σ ∈ Gal(L/K)) ,

which means that the Galois group Gal(L/K) acts on the set of vectors
{uχ}χ∈X by permutation. Hence the representation space over L of linear
combinations of {uχ}χ∈X comes from scalar extension of a subspace U over
K of V (Hilbert’s theorem 90) which contains W . The vector space U is
a non-zero T -representation over K.

For each v ∈M, let

mv = min
{
〈χ, e(v)〉

∣∣uχ 6= 0
}
.

As W is of dimension one, we see by the definition of sub-filtration

W i
v =

{
L⊗K W (i ≤ mv)

0 (i > mv) .

Hence we have µv(W ) = mv. Since

grw (U ·v) '
⊕

〈χ,e(v)〉=w
Luχ,

we get

µv (ιT,id,e(U)) = 1
dimK U

∑
w∈R

w dimL grw (U ·v)

= 1
dimK U

∑
uχ 6=0
〈χ, e(v)〉

≥ 1
dimK U

∑
uχ 6=0

mv

= mv.

Lemma A.1 tells us that

0 = µv(ιT,id,e(U)) ≥ mv = µv(W ).

�

Proposition A.4. For any finite dimensional representation space V over
K of T , the vector space ιT,id,e(V ) with multiple filtrations is semi-stable of
slope zero, hence the functor ιT,id,e factors through Css

0 (K,L,M).
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Proof. Completely in the same way as in the proof of Proposition 3.7, we
can show that µv(W ) ≤ 0 for each v ∈ M and for any non-zero vector
subspace W over K of V with the sub-filtration of ιT,id,e(V ). �

Now we assume that the image of the map e : M → R ⊗Z Y and its
Galois conjugates span the vector space R⊗ZY over R. Namely, we assume
that we have an equation

(A.1)
∑
v∈M

∑
σ∈Gal(L/K)

Rσ(e(v)) = R⊗Z Y.

Theorem A.5. On the assumption (A.1), the functor ιT,id,e : RepK(T )→
Css

0 (K,L,M) is fully faithful.

Proof. Let V and W be T -representations over K and let f : V → W be
the underlying linear map over K of a morphism in Css

0 (K,L,M). In other
words, the map f is filtered with respect to every index v ∈ M. We have
to show that f is T -equivariant.

Let Vχ be as before. For an element x of Vχ, decompose the image f(x)
as

f(x) =
∑
φ∈X

yφ, yφ ∈Wφ.

From our definition of filtration on a representation space, we have x ∈
V
〈χ,e(v)〉
v for all v ∈M. Since f is filtered, we see

f(x) ∈W 〈χ,e(v)〉
v for any v ∈M,

hence
yφ = 0 if 〈φ, e(v)〉 < 〈χ, e(v)〉 for some v ∈M.

On the other hand, we have for all σ ∈ Gal(L/K)

f(σ(x)) = σ(f(x)) =
∑
φ

σ(yφ).

As we have seen in the equation (3.1) in Section 3, we know

σ(x) ∈ Vσ(χ) and σ(yφ) ∈Wσ(φ).

By the same reasoning as above, if 〈σ(φ), e(v)〉 < 〈σ(χ), e(v)〉 for some
σ and v, then yφ = σ−1(σ(yφ)) = σ−1(0) = 0. As the canonical pairing
〈·, ·〉 : R⊗Z X × R⊗Z Y → R is Gal(L/K)-invariant, this means that

yφ = 0 if
〈
φ, σ−1(e(v))

〉
<
〈
χ, σ−1(e(v))

〉
for some σ ∈ Gal(L/K) and some v ∈M.

We need the following simple lemma.
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Lemma A.6. Let ψ be a character over L on T and assume that
〈ψ, τ(e(v))〉 6= 0 for some τ and v. There exists σ ∈ Gal(L/K) such that

〈σ(ψ), τ(e(v))〉 =
〈
ψ, σ−1τ(e(v))

〉
< 0.

Proof. When 〈ψ, τ(e(v))〉 < 0, the identity element of Gal(L/K) meets the
requirement.

Suppose that 〈ψ, τ(e(v))〉 > 0. To draw the conclusion, we may assume
that the extension degree of the field L over K is finite. If for all σ ∈
Gal(L/K)

〈σ(ψ), τ(e(v))〉 ≥ 0,
then 〈 ∑

σ∈Gal(L/K)
σ(ψ), τ(e(v))

〉
=

∑
σ∈Gal(L/K)

〈σ(ψ), τ(e(v))〉 > 0.

Since the group multiplication in Gm is defined over K (in fact, over Z),
the character

∑
σ∈Gal(L/K) σ(ψ) is invariant by the action of Gal(L/K),

hence it is defined over K. When T is anisotropic, the last inequality is
impossible. �

If some element τ of Gal(L/K) and some index v ∈M satisfy
〈φ, τ(e(v))〉 6= 〈χ, τ(e(v))〉 ,

then apparently 〈φ− χ, τ(e(v))〉 = 〈φ, τ(e(v))〉 − 〈χ, τ(e(v))〉 6= 0. Thanks
to Lemma A.6, there exists σ ∈ Gal(L/K) fulfilling

〈φ− χ, σ(e(v))〉 < 0, i.e. 〈φ, σ(e(v))〉 < 〈χ, σ(e(v))〉 .
From what we have seen, we get yφ = 0 for such a character φ ∈ X.

Consequently, we observe that
yφ = 0 unless 〈φ, σ(e(v))〉 = 〈χ, σ(e(v))〉

for all σ ∈ Gal(L/k) and all v ∈M. As the Galois conjugates of e(v) (v ∈
M) span R ⊗Z Y on the assumption (A.1), only when φ = χ, it occurs
that yφ 6= 0, which means f(x) (= yχ) is an element of Wχ. It is obvious
that any linear map which sends Vχ to Wχ commutes with the action of T .
Hence the map f is T -equivariant. �

A.2. Split torus. When the group is a split torus, the functor defined in
Section 1 does not necessarily factor through the full subcategory of semi-
stable objects of slope zero. But with an appropriate choice of the index
set and of a family of ‘cocharacters’, we can realize the category of finite
dimensional representations of a split torus as a full subcategory of the
category of vector spaces with semi-stable multiple filtrations of slope zero.

Let G = T be a split torus over K and Y the cocharacter group of T .
The maps κ(v) (v ∈ M) are all defined to be the identity of T . Choose a
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function e of M to R⊗Z Y such that for except a finite number of v ∈M,
we have e(v) = 0 and such that∑

v∈M
e(v) = 0.

Other symbols are the same as in Section 1 and in Subsection A.1.

Remark A.7. As mentioned earlier in Remark 1.8, any functorial filtration
stems from a ‘cocharacter’. Since the category of finite dimensional rep-
resentations of a split torus is generated by one-dimensional objects, we
observe that the above vanishing condition of the sum of values of e must
be placed in order to realize functorially the representation spaces as vector
spaces with filtrations of slope zero (cf. Lemma A.9 below).

Remark A.8. On the same line of thought, the category of representations
of a finite split multiplicative group cannot be realized as a full subcategory
of Css

0 (K,L,M). It is because any non-trivial power (self tensor product)
of a one-dimensional object other than a unit object in Css

0 (K,L,M) never
becomes a unit object. This means that the group of connected components
of Autωss

0 (K,L,M) does not have such a finite group as a quotient group.
We would like to return to the issue of connectedness of Autωss

0 (K,L,M)
in a future.

Lemma A.9. For any finite dimensional non-zero representation space V
over K of T , we have µ (ιT,id,e(V )) = 0.

Proof. Let n be the dimension over K of V . As in the proof of Lemma 3.5,
we see

µv(ιT,id,e(V )) = 1
n
µv

(
ιT,id,e

(
n∧
V

))
.

Call χ the character of the one-dimensional representation space
∧n V over

K. By our definition of filtration on representation spaces, we have for each
v ∈M

µv (ιT,id,e(V )) = 1
n
〈χ, e(v)〉.

Summing them up all over v ∈M, we get

µ (ιT,id,e(V )) =
∑
v∈M

µv (ιT,id,e(V ))

= 1
n

〈
χ,
∑
v∈M

e(v)
〉

= 1
n
〈χ, 0〉 = 0.

�
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Lemma A.10. To an arbitrary one-dimensional vector subspace W over
K of a T -representation V over K, attach the sub-filtration over L of
ιT,id,e(V ). We have µ(W ) ≤ 0.
Proof. In the same way (more easily) as in the proof of Lemma A.3, we see
that there exists a sub-representation U over K of V such that

µv(ιT,id,e(U)) ≥ µv(W ) for any v ∈M.

Adding the respective sides of the inequalities all over the indices v, we
obtain

µ(ιT,id,e(U)) ≥ µ(W ).
Lemma A.9 says that the left hand side is equal to zero. �

Proposition A.11. For any finite dimensional representation space V over
K of T , the vector space ιT,id,e(V ) with multiple filtrations is semi-stable of
slope zero, hence the functor ιT,id,e factors through Css

0 (K,L,M).
Proof. It is enough to prove that for any non-zero vector subspace W over
K of V with the sub-filtrations of ιT,id,e(V ), we have µ(W ) ≤ 0.

Let d = dimKW . Completely in the same way as in the proof of Propo-
sition 3.7, we find a non-trivial canonical homomorphism f : detW →
ιT,id,e

(∧d V ) in C(K,L,M) so that for all v ∈M

µv(detW ) ≤ µv(Im f).
Summation over v ∈M of the respective sides of the inequalities gives

µ(W ) = 1
d
µ(detW ) ≤ 1

d
µ(Im f).

By Lemma A.10, the right hand side is not positive. �

We further assume (that the cardinality of the index set M is greater
than dimT and) that the equation

(A.2)
∑
v∈M

R e(v) = R⊗Z Y

holds.
Theorem A.12. On the assumption (A.2), the functor ιT,id,e : RepK(T )→
Css

0 (K,L,M) is fully faithful.
Proof. Let V and W be T -representations over K and let f : V → W be
the underlying linear map over K of a morphism in Css

0 (K,L,M). We have
to show that f is T -equivariant.

Let Vχ be the subspace over L of L ⊗K V on which T ×K L acts by
multiplication of a character χ. For an element x of Vχ, decompose the
image f(x) as

f(x) =
∑
φ∈X

yφ, yφ ∈Wφ,
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where the symbol Wφ has a similar meaning to Vφ. As in the proof of
Theorem A.5, we see

yφ = 0 if 〈φ, e(v)〉 < 〈χ, e(v)〉 for some v ∈M.

If a character φ satisfies
〈φ, e(v)〉 ≥ 〈χ, e(v)〉 for all v ∈M,

then we have
0 ≤ 〈φ, e(v)〉 − 〈χ, e(v)〉 ≤

∑
v∈M

(〈φ, e(v)〉 − 〈χ, e(v)〉)

=
∑
v∈M
〈φ− χ, e(v)〉

=
〈
φ− χ,

∑
v∈M

e(v)
〉
.

The assumption
∑
v∈M e(v) = 0 forces
〈φ, e(v)〉 = 〈χ, e(v)〉 for all v ∈M.

Since e(v) (v ∈M) span R⊗Z Y on the assumption (A.2), this occurs only
when φ = χ, which means f(x) (= yχ) is an element of Wχ. Thus the map
f is T -equivariant. �

A.3. Algebraic groups generated by tori. LetG be an algebraic group
over K such that the images of a finite number of morphisms defined over
K of tori to G generate a dense subgroup of G and such that the tori split
over L. As an example, any connected reductive group overK satisfies these
conditions for a suitable Galois extension L which depends of course on
the reductive group.

We fix tori T (1), . . . , T (l) over K which split over L and morphisms
κ(i) : T (i) → G (i = 1, . . . , l) over K such that the images of κ(i) (i =
1, . . . , l) generate a dense subgroup of G. We may suppose that the tori
T (1), . . . , T (h) are anisotropic over K and the tori T (h+1), . . . , T (l) are split
over K, for any torus is generated by an anisotropic subtorus and a split
subtorus (see e.g. [2, 8.15 Proposition]). We denote by Y (i) (i = 1, . . . , l)
their respective cocharacter groups over L. Select a family κ(·) of mor-
phisms and a family e(·) of ‘cocharacters’ as follows: For each v ∈ M, the
morphism κ(v) is κ(i) ×K L : T (i) ×K L → G ×K L for some i and the
‘cocharacter’ e(v) is an element of R ⊗Z Y

(i) for the same i such that as
before e(v) = 0 for except a finite number of v ∈M and such that∑

v∈M
e(v) ∈

h⊕
i=1

R⊗Z Y
(i)

(the ‘split part’ of the sum vanishes, cf. Subsection A.2).
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Proposition A.13. For any finite dimensional representation space V over
K of G, the vector space ιG,κ,e(V ) with multiple filtrations is semi-stable of
slope zero, hence the functor ιG,κ,e factors through Css

0 (K,L,M).

Proof. Let

M(i) = {v ∈M | κ(v) = κ(i) ×K L} (i = 1, . . . , l)

and
µ(i)(·) =

∑
v∈M(i)

µv(·) (i = 1, . . . , l).

We have

M =
l⊔

i=1
M(i) (disjoint union), µ(·) =

l∑
i=1

µ(i)(·).

Since the morphisms κ(v) (v ∈M) are defined over K, restricting the group
and the index set to T (i) and M(i) for any fixed i and applying the results
of Subsection A.1 and Subsection A.2, we see that the vector space V with
M(i)-indexed filtration(s) is semi-stable of slope zero with respect to the
slope function µ(i) for each i = 1, . . . , l. As µ is the sum of µ(i) (i = 1, . . . , l),
the vector space V with M-indexed filtration(s) is semi-stable of slope zero
with respect to the slope function µ. �

We assume in addition (that the cardinality of the index set M is suffi-
ciently large so) that we possess the equation

(A.3)
∑
v∈M

∑
σ∈Gal(L/K)

R σ(e(v)) =
l⊕

i=1
R⊗Z Y

(i).

Theorem A.14. The condition (A.3) imposed, the functor ιG,κ,e : RepK(G)
→ Css

0 (K,L,M) is fully faithful.

Proof. Let V and W be G-representations over K and let f : V → W be
the underlying linear map over K of a morphism in Css

0 (K,L,M). We have
to show that f is G-equivariant.

By the same method as in the proof of Proposition A.13, we see that f
is T (i)-equivariant for every i = 1, . . . , l.

We regard f as aK-valued point of an affine variety HomK(V,W ) overK,
on which algebraic groups AutK(V ) and AutK(W ) act over K respectively
from the right and from the left. In particular, the group G acts over K
on HomK(V,W ) by conjugation. The stability group Gf in G of f is a
closed subvariety [2, 1.7 Proposition (b)]. As we know already, it includes
the images of tori T (1), . . . , T (l). Since they generate a dense subgroup of
G, we obtain Gf = G. �
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