The divisor problem for binary cubic forms
Journal de Théorie des Nombres de Bordeaux, Volume 23 (2011) no. 3, pp. 579-602.

We investigate the average order of the divisor function at values of binary cubic forms that are reducible over and discuss some applications.

Nous étudions l’ordre moyen du nombre de diviseurs des valeurs de certaines formes binaires cubiques qui ne sont pas irréductibles sur  et discutons quelques applications.

Received:
Published online:
DOI: 10.5802/jtnb.778
Classification: 11N37,  11D25
Tim Browning 1

1 School of Mathematics University of Bristol Bristol BS8 1TW United Kingdom
@article{JTNB_2011__23_3_579_0,
     author = {Tim Browning},
     title = {The divisor problem for binary cubic forms},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {579--602},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {23},
     number = {3},
     year = {2011},
     doi = {10.5802/jtnb.778},
     zbl = {1271.11091},
     mrnumber = {2861076},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.778/}
}
TY  - JOUR
TI  - The divisor problem for binary cubic forms
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2011
DA  - 2011///
SP  - 579
EP  - 602
VL  - 23
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.778/
UR  - https://zbmath.org/?q=an%3A1271.11091
UR  - https://www.ams.org/mathscinet-getitem?mr=2861076
UR  - https://doi.org/10.5802/jtnb.778
DO  - 10.5802/jtnb.778
LA  - en
ID  - JTNB_2011__23_3_579_0
ER  - 
%0 Journal Article
%T The divisor problem for binary cubic forms
%J Journal de Théorie des Nombres de Bordeaux
%D 2011
%P 579-602
%V 23
%N 3
%I Société Arithmétique de Bordeaux
%U https://doi.org/10.5802/jtnb.778
%R 10.5802/jtnb.778
%G en
%F JTNB_2011__23_3_579_0
Tim Browning. The divisor problem for binary cubic forms. Journal de Théorie des Nombres de Bordeaux, Volume 23 (2011) no. 3, pp. 579-602. doi : 10.5802/jtnb.778. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.778/

[1] V. V. Batyrev and Yu. I. Manin, Sur le nombre des points rationnels de hauteur borné des variétés algébriques. Math. Ann. 286 (1990), 27–43. | MR: 1032922 | Zbl: 0679.14008

[2] R. de la Bretèche and T. D. Browning, Binary linear forms as sums of two squares. Compositio Math. 144 (2008), 1375–1402. | MR: 2474314 | Zbl: pre05382617

[3] R. de la Bretèche and T. D. Browning, Le problème des diviseurs pour des formes binaires de degré 4. J. reine angew. Math. 646 (2010), 1–44. | MR: 2719554 | Zbl: 1204.11158

[4] S. Daniel, On the divisor-sum problem for binary forms. J. reine angew. Math. 507 (1999), 107–129. | MR: 1670278 | Zbl: 0913.11041

[5] W. Duke, J. B. Friedlander and H. Iwaniec, A quadratic divisor problem. Inventiones Math. 115 (1994), 209–217. | MR: 1258903 | Zbl: 0791.11049

[6] T. Estermann, Über die Darstellung einer Zahl als Differenz von swei Produkten. J. reine angew. Math. 164 (1931), 173–182. | Zbl: 0001.20302

[7] G. Greaves, On the divisor-sum problem for binary cubic forms. Acta Arith. 17 (1970), 1–28. | MR: 263761 | Zbl: 0198.37903

[8] A. E. Ingham, Some asymptotic formulae in the theory of numbers. J. London Math. Soc. 2 (1927), 202–208.

[9] Y. Motohashi, The binary additive divisor problem. Ann. Sci. École Norm. Sup. 27 (1994), 529–572. | Numdam | MR: 1296556 | Zbl: 0819.11038

[10] M. Robbiani, On the number of rational points of bounded height on smooth bilinear hypersurfaces in biprojective space. J. London Math. Soc. 63 (2001), 33–51. | MR: 1801715 | Zbl: 1020.11046

[11] C. V. Spencer, The Manin Conjecture for x 0 y 0 ++x s y s =0. J. Number Theory 129 (2009), 1505–1521. | MR: 2521490 | Zbl: 1171.11054

Cited by Sources: