Computing the number of certain Galois representations mod p
Journal de Théorie des Nombres de Bordeaux, Volume 23 (2011) no. 3, pp. 603-627.

Using the link between Galois representations and modular forms established by Serre’s Conjecture, we compute, for every prime p2593, a lower bound for the number of isomorphism classes of Galois representation of Q on a two–dimensional vector space over F ¯ p which are irreducible, odd, and unramified outside p.

En utilisant le lien entre représentations galoisiennes et formes modulaires provenant de la Conjecture de Serre, nous calculons, pour tout premier p2593, une borne pour le nombre de classes d’isomorphismes des représentations galoisiennes de Q sur un F ¯ p –espace vectoriel de dimension deux qui sont irréductibles, impaires, et non–ramifiées en dehors de p.

Received:
Published online:
DOI: 10.5802/jtnb.779
Tommaso Giorgio Centeleghe 1

1 Universität Heidelberg IWR, Im Neuenheimer Feld 368 69120 Heidelberg, Germany
@article{JTNB_2011__23_3_603_0,
     author = {Tommaso Giorgio Centeleghe},
     title = {Computing the number of certain {Galois} representations mod $p$},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {603--627},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {23},
     number = {3},
     year = {2011},
     doi = {10.5802/jtnb.779},
     zbl = {1261.11044},
     mrnumber = {2861077},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.779/}
}
TY  - JOUR
TI  - Computing the number of certain Galois representations mod $p$
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2011
DA  - 2011///
SP  - 603
EP  - 627
VL  - 23
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.779/
UR  - https://zbmath.org/?q=an%3A1261.11044
UR  - https://www.ams.org/mathscinet-getitem?mr=2861077
UR  - https://doi.org/10.5802/jtnb.779
DO  - 10.5802/jtnb.779
LA  - en
ID  - JTNB_2011__23_3_603_0
ER  - 
%0 Journal Article
%T Computing the number of certain Galois representations mod $p$
%J Journal de Théorie des Nombres de Bordeaux
%D 2011
%P 603-627
%V 23
%N 3
%I Société Arithmétique de Bordeaux
%U https://doi.org/10.5802/jtnb.779
%R 10.5802/jtnb.779
%G en
%F JTNB_2011__23_3_603_0
Tommaso Giorgio Centeleghe. Computing the number of certain Galois representations mod $p$. Journal de Théorie des Nombres de Bordeaux, Volume 23 (2011) no. 3, pp. 603-627. doi : 10.5802/jtnb.779. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.779/

[1] M. F. Atiyah, I.G. Macdonald, Introduction to Commutative Algebra. Addison-Wesley, 1969. | MR: 242802 | Zbl: 0175.03601

[2] A. Ash, G. Stevens, Modular Forms in characteristic and special values of their L-functions. Duke Math. J. 53 (1986), no.3, 849–868. | MR: 860675 | Zbl: 0618.10026

[3] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language. J. Symbolic Comput. 24 (1997), 235–265. | MR: 1484478 | Zbl: 0898.68039

[4] C. Citro, A. Ghitza, Enumerating Galois representations in Sage. Preprint available at http://arxiv.org/abs/1006.4084.

[5] B. Edixhoven, The weight in Serre’s conjecture on modular forms. Invent. Math. 109 (1992), 563–594. | EuDML: 144035 | MR: 1176206 | Zbl: 0777.11013

[6] B. Gross, A tameness criterion for Galois representations associated to modular forms (mod p). Duke Math. J. 61 (1990), no. 2, 445–517. | MR: 1074305 | Zbl: 0743.11030

[7] N. Jochnowitz, A study of the local components of the Hecke Algebra mod l. Trans. Amer. Math. Soc. 270 (1982), no.1, 253–267. | MR: 642340 | Zbl: 0536.10021

[8] N. Jochnowitz, Congruences between systems of eigenvalues of modular forms. Trans. Amer. Math. Soc. 270 (1982), no.1, 269–285. | MR: 642341 | Zbl: 0536.10022

[9] N. Katz, p-adic properties of modular schemes and modular forms. Modular Functions of One Variable III, Lecture Notes in Math. 350, 69–190. Springer–Verlag, 1973. | MR: 447119 | Zbl: 0271.10033

[10] C. Khare, Modularity of Galois representations and motives with good reduction properties. J. Ramanujan Math. Soc. 22 (2007), No. 1, 1-26. | MR: 2312549 | Zbl: 1192.11036

[11] C. Khare, Serre’s modularity conjecture: the level one case. Duke Math. J. 134 (2006), no.3, 557–589. | MR: 2254626 | Zbl: 1105.11013

[12] S. Lang, Introduction to Modular Forms. Springer–Verlag, 1976. | MR: 429740 | Zbl: 0344.10011

[13] D.A. Marcus, Number Fields. Springer–Verlag, 1977. | MR: 457396 | Zbl: 0383.12001

[14] J.–P. Serre, Congruences et formes modulaires (d’après H.P.F. Swinnerton-Dyer). Sém. Bourbaki 1972/72, no. 416. | Numdam | MR: 466020 | Zbl: 0276.14013

[15] J.–P. Serre, Corps Locaux. Hermann, Quatrième édition, corrigée, 2004. | MR: 354618

[16] J.–P. Serre, A Course in Arithmetiic. Springer-Verlag, 1973. | MR: 344216 | Zbl: 0432.10001

[17] J.–P. Serre, Modular forms of weight one and Galois representations. Algebraic Number Fields, Edited by A. Fröhlich, 193–268. Acad. Press, 1977. | MR: 450201 | Zbl: 0366.10022

[18] G. Wiese, Dihedral Galois representations and Katz modular forms. Documenta Math. 9 (2004), 123–133. | MR: 2054983 | Zbl: 1119.14019

Cited by Sources: