Gaps between zeros of the derivative of the Riemann ξ-function
Journal de théorie des nombres de Bordeaux, Tome 22 (2010) no. 2, pp. 287-305.

En supposant l’hypothèse de Riemann, on examine la distribution d’écarts entre les zéros du ξ (s). On démontre qu’une proportion positive d’écarts sont inférieurs à 0.796 fois l’écart moyen et que dans l’autre direction, une proportion positive d’écarts sont 1.18 fois supérieurs à l’écart moyen. On montre également l’existence d’un nombre infini d’écarts normalisés qui sont inférieurs (supérieurs) à 0.7203 (respectivement 1.5).

Assuming the Riemann hypothesis, we investigate the distribution of gaps between the zeros of ξ (s). We prove that a positive proportion of gaps are less than 0.796 times the average spacing and, in the other direction, a positive proportion of gaps are greater than 1.18 times the average spacing. We also exhibit the existence of infinitely many normalized gaps smaller (larger) than 0.7203 (1.5, respectively).

DOI : 10.5802/jtnb.716
Classification : 11M26, 11M06
Hung Manh Bui 1

1 Mathematical Institute University of Oxford Oxford, OX1 3LB England
@article{JTNB_2010__22_2_287_0,
     author = {Hung Manh Bui},
     title = {Gaps between zeros of the derivative of the {Riemann} $\xi $-function},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {287--305},
     publisher = {Universit\'e Bordeaux 1},
     volume = {22},
     number = {2},
     year = {2010},
     doi = {10.5802/jtnb.716},
     mrnumber = {2769063},
     zbl = {1223.11103},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.716/}
}
TY  - JOUR
AU  - Hung Manh Bui
TI  - Gaps between zeros of the derivative of the Riemann $\xi $-function
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2010
SP  - 287
EP  - 305
VL  - 22
IS  - 2
PB  - Université Bordeaux 1
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.716/
DO  - 10.5802/jtnb.716
LA  - en
ID  - JTNB_2010__22_2_287_0
ER  - 
%0 Journal Article
%A Hung Manh Bui
%T Gaps between zeros of the derivative of the Riemann $\xi $-function
%J Journal de théorie des nombres de Bordeaux
%D 2010
%P 287-305
%V 22
%N 2
%I Université Bordeaux 1
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.716/
%R 10.5802/jtnb.716
%G en
%F JTNB_2010__22_2_287_0
Hung Manh Bui. Gaps between zeros of the derivative of the Riemann $\xi $-function. Journal de théorie des nombres de Bordeaux, Tome 22 (2010) no. 2, pp. 287-305. doi : 10.5802/jtnb.716. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.716/

[1] J. Bian, The pair correlation of zeros of ξ (k) (s) and discrete moments of ζ(s). PhD thesis, University of Rochester, 2008.

[2] H. M. Bui, Large gaps between consecutive zeros of the Riemann zeta-function. Preprint, available on Arxiv at http://arxiv.org/abs/0903.4007

[3] H. M. Bui, M. B. Milinovich, Nathan Ng, A note on the gaps between consecutive zeros of the Riemann zeta-function. To appear in Proc. Amer. Math. Soc. Available on Arxiv at http://arxiv.org/abs/0910.2052 | MR

[4] J. B. Conrey, A. Ghosh, D. Goldston, S. M. Gonek, D. R. Heath-Brown, On the distribution of gaps between zeros of the zeta-function. Quart. J. Math. Oxford 36 (1985), 43–51. | MR | Zbl

[5] J. B. Conrey, A. Ghosh, S. M. Gonek, A note on gaps between zeros of the zeta function. Bull. London Math. Soc. 16 (1984), 421–424. | MR | Zbl

[6] J. B. Conrey, A. Ghosh, S. M. Gonek, Large gaps between zeros of the zeta-function. Mathematika 33 (1986), 212–238. | MR | Zbl

[7] T. Craven, G. Csordas, W. Smith, The zeros of derivatives of entire functions and the Pólya-Wiman conjecture. Ann. Math. 125 (1987), 405–431. | MR | Zbl

[8] H. Davenport, Multiplicative number theory. GTM 74, Springer-Verlag, 2000. | MR | Zbl

[9] D. W. Farmer, S. M. Gonek, Pair correlation of the zeros of the derivative of the Riemann ξ-function. Preprint, available on Arxiv at http://arxiv.org/abs/0803.0425

[10] D. W. Farmer, R. Rhoades, Differentiation evens out zero spacings. Trans. Amer. Math. Soc. 357 (2005), 3789–3811. | MR | Zbl

[11] A. Fujii, On the distribution of the zeros of the Riemann zeta-function in short intervals. Bull. Amer. Math. Soc. 81 (1975), 139–142. | MR | Zbl

[12] R. R. Hall, A new unconditional result about large spaces between zeta zeros. Mathematika 52 (2005), 101–113. | MR | Zbl

[13] H. L. Montgomery, The pair correlation of zeros of the zeta function. Analytic Number Theory, Proc. Sym. Pure Math. 24 (1973), 181–193. | MR | Zbl

[14] H. L. Montgomery, A. M. Odlyzko, Gaps between zeros of the zeta function. Topics in Classical Number Theory, Coll. Math. Soc. Janos Bolyai 34 (1984), 1079–1106, North-Holland. | MR | Zbl

[15] H. L. Montgomery, R. C. Vaughan, The large sieve. Mathematika 20 (1973), 119–134. | MR | Zbl

[16] J. Mueller, On the difference between consecutive zeros of the Riemann zeta function. J. Number Theory 14 (1982), 327–331. | MR | Zbl

[17] Nathan Ng, Large gaps between the zeros of the Riemann zeta function. J. Number Theory 128 (2008), 509–556. | MR | Zbl

[18] A. Selberg, Note on a paper by L. G. Sathe. J. Indian Math. Soc. 18 (1954), 83–87. | MR | Zbl

[19] K. Soundararajan, On the distribution of gaps between zeros of the Riemann zeta-function. Quart. J. Math. Oxford 47 (1996), 383–387. | MR | Zbl

[20] E. C. Titchmarsh, The theory of the Riemann zeta-function. Revised by D. R. Heath-Brown, Clarendon Press, second edition, 1986. | MR | Zbl

Cité par Sources :