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Journal de Théorie des Nombres
de Bordeaux 22 (2010), 287-305

Gaps between zeros of the derivative of the
Riemann ξ-function

par Hung Manh BUI

Résumé. En supposant l’hypothèse de Riemann, on examine
la distribution d’écarts entre les zéros du ξ′(s). On démontre
qu’une proportion positive d’écarts sont inférieurs à 0.796 fois
l’écart moyen et que dans l’autre direction, une proportion posi-
tive d’écarts sont 1.18 fois supérieurs à l’écart moyen. On montre
également l’existence d’un nombre infini d’écarts normalisés qui
sont inférieurs (supérieurs) à 0.7203 (respectivement 1.5).

Abstract. Assuming the Riemann hypothesis, we investigate
the distribution of gaps between the zeros of ξ′(s). We prove that
a positive proportion of gaps are less than 0.796 times the average
spacing and, in the other direction, a positive proportion of gaps
are greater than 1.18 times the average spacing. We also exhibit
the existence of infinitely many normalized gaps smaller (larger)
than 0.7203 (1.5, respectively).

1. Introduction
The Riemann ξ-function is defined by

ξ(s) = s(s− 1)
2
π−s/2Γ

(
s
2
)
ζ(s),

where Γ(s) is the Euler Γ-function and ζ(s) is the Riemann zeta-function.
The ξ-function is an entire function of order 1 and has a functional equation

ξ(s) = ξ(1− s).

The zeros of ξ(s) are identical to the complex zeros of the Riemann zeta-
function. So if the Riemann hypothesis holds, all the zeros of ξ(s) are on the
critical line σ = 1/2, and so are the zeros of ξ′(s). Assuming the Riemann
hypothesis, we write the zeros of ξ′(s) as 1

2 + iγ1 (throughout the paper,
the ordinates of the zeros of ξ(s) will be denoted by γ, while those of ξ′(s)
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will be denoted by γ1). For 0 < γ1 ≤ γ′1 two consecutive ordinates of zeros,
we define the normalized gap

δ(γ1) = (γ′1 − γ1) log γ1
2π
.

The number of zeros of ξ′(s) with ordinates in [0, T ] is 1
2πT log T +O(T ),

so on average δ(γ1) is 1. In this paper, we are interested in the distribution
of δ(γ1). For a thorough discussion of the motivations of the problem, see
[9]. It is expected that there exist arbitrarily small and large gaps between
the zeros of ξ′(s). That is to say

lim inf
γ1
δ(γ1) = 0 and lim sup

γ1
δ(γ1) =∞,

where γ1 runs over all the ordinates of the zeros of ξ′(s). We first establish

Theorem 1.1. Assume RH. Then we have
lim inf
γ1
δ(γ1) < 0.7203 and lim sup

γ1
δ(γ1) > 1.5.

Remark. The existence of small and large gaps between the zeros of the
Riemann zeta-function have been investigated by various authors [14, 5, 6,
12, 17, 2, 3]. The current best results, assuming the Riemann hypothesis,
assert that lim infγ δ(γ) < 0.5155 and lim supγ δ(γ) > 2.69, where γ runs
over the ordinates of the zeros of ζ(s). It is not surprising that these results
are better than those obtained in our context. Let Ξ(z) = ξ(1

2 + z). The
Ξ-function is an entire function of order 1 and real on the real axis. For
such functions, it is conjectured that repeated differentiation causes the
zeros to migrate to the real axis and also approach equal spacing [7, 10].
For a thorough discussion in this topic, see Section 2.2 [9].

We next define the upper and lower distribution functions
D+(α) = lim sup

T→∞
D(α, T ) and D−(α) = lim inf

T→∞
D(α, T ),

where

D(α, T ) =
( 1

2π
T log T

)−1 ∑
0<γ1≤T
δ(γ1)≤α

1.

Little is known about D+(α) and D−(α). It is expected that D+(α) =
D−(α) (= D(α)) for all α and that D(0) = 0, D(α) < 1 for all α, and D(α)
is continuous. In a recent paper, by developing an analogue of Montgomery’
result [13] for the pair correlation of the zeros of ξ′(s), Farmer and Gonek
[9] proved that

D−(0.91) > 0 and D−(1) > 0.035.
That means that a positive proportion of gaps between the zeros of ξ′(s)
are less than 0.91 times the average spacing, and more than 3.5% of the
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normalized neighbour gaps are smaller than average. We slightly improve
upon their first statement and show that

Theorem 1.2. Assume RH. Then we have
D−(0.796) > 0 and D+(1.18) < 1.

Remark. It is possible that our theorems can be improved by using other
choices of coefficients. However, we have made no serious attempt to obtain
the optimal results given by this method.

In the context of the Riemann zeta-function, it is also known that a
positive proportion of normalized gaps between the zeros of ζ(s) are less
(more) than 0.6878 (1.4843, respectively) [19]. Other results involving the
zeros of the higher derivatives of the Riemann ξ-function are also proved
in [1].

The paper is organized as follows. In the next section, we sketch the idea
to attack our theorems. Section 3 contains all the necessary lemmas. We
prove Theorem 1.1 in Section 4. The final section is devoted to Theorem 1.2.

2. Initial manipulations
Throughout the article, we assume the Riemann hypothesis. We also

assume that y = (T/2π)θ, where 0 < θ < 1/2, and r ≥ 1. We let C
denote some absolute constant which may change from time to time. We
let L = log T2π and define

hk(α,M) =
∫ πα/L
−πα/L

∑
T<γ1≤2T |M(1

2 + iγ1 + it)|2kdt∫ 2T
T |M(1

2 + it)|2kdt
,

where

M(s) =
∑
n≤y

a(n)f( log y/n
log y )
ns

for some arithmetic function a(n) and smooth function f(x). We will see
later that in order to prove Theorem 1.1 we would like to choose a(n) =
dr(n) for the large gaps, and a(n) = µr(n) for the small gaps, where dr(n)
and µr(n) are the coefficients of n−s in the Dirichlet series of ζ(s)r and
ζ(s)−r, respectively:

ζ(s)r =
∞∑
n=1

dr(n)
ns

and ζ(s)−r =
∞∑
n=1

µr(n)
ns

(σ > 1).

In the case of Theorem 1.2, the coefficients a(n) are chosen to be supported
on 1 and the primes.

Theorem 1.1 is based on the following idea of Mueller [16]. Given that
lim inf
γ1
δ(γ1) = µ and lim sup

γ1
δ(γ1) = λ.
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It is easy to see that∫ πµ/L
−πµ/L

∑
T<γ1≤2T

|M( 1
2 + iγ1 + it)|2kdt ≤ (1 + o(1))

∫ 2T

T
|M( 1

2 + it)|2kdt

≤
∫ πλ/L
−πλ/L

∑
T<γ1≤2T

|M( 1
2 + iγ1 + it)|2kdt.

So hk(µ,M) ≤ 1 + o(1) ≤ hk(λ,M). Clearly, hk(α,M) is monotonically
increasing with respect to α. Therefore, if hk(α,M) < 1 for some choice
of α and M , then α < λ. Similarly, if hk(α,M) > 1 then α > µ. Thus it
suffices to show that

(2.1) h1(1.5,M1) < 1 and h1(0.7203,M2) > 1,

for some M1 and M2.
To attack Theorem 1.2, we follow the setting of [4]. For γ†1 ≤ γ1 ≤ γ′1

three consecutive ordinates of zeros of ξ′(s), let

δ+(γ1) = (γ′1 − γ1)L/2π, and δ−(γ1) = (γ1 − γ†1)L/2π.

Also let

δ0(γ1) = min{δ+(γ1), δ−(γ1)}, and δ1(γ1) = max{δ+(γ1), δ−(γ1)}.

We first establish the formula for the large gaps. We have, up to an error
term of size O(T 1−ε),

∫ 2T

T
|M( 1

2 + it)|2dt =
∑

T<γ1≤2T

∫ γ1+πδ+(γ1)/L

γ1−πδ−(γ1)/L
|M( 1

2 + it)|2dt

≤
∑

T<γ1≤2T
δ1(γ1)≤λ

∫ πλ/L
−πλ/L

|M( 1
2 + i(γ1 + t))|2dt

+
∑

T<γ1≤2T
δ1(γ1)>λ

∫ πδ+(γ1)/L

−πδ−(γ1)/L
|M( 1

2 + i(γ1 + t))|2dt

≤ h1(λ,M)
∫ 2T

T
|M( 1

2 + it)|2dt

+
∑

T<γ1≤2T
δ1(γ1)>λ

∫ πδ+(γ1)/L

−πδ−(γ1)/L
|M( 1

2 + i(γ1 + t))|2dt.
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Hence

(1− h1(λ,M))
∫ 2T

T
|M( 1

2 + it)|2dt+O(T 1−ε)

≤
∑

T<γ1≤2T
δ1(γ1)>λ

∫ πδ+(γ1)/L

−πδ−(γ1)/L
|M( 1

2 + i(γ1 + t))|2dt.

Using Cauchy’s inequality, the right hand side is bounded by(2π
L

) 1
2
( ∑
T<γ1≤2T
δ1(γ1)>λ

1
) 1

4
( ∑
T<γ1≤2T

δ(γ1)2
) 1

4
(∫ 2T

T
|M( 1

2 + it)|4dt
) 1

2
.

Thus, if h1(λ,M) < 1,

(2.2)
∑

T<γ1≤2T
δ1(γ1)>λ

1 ≥
(1− h1(λ,M))4( ∫ 2T

T |M( 1
2 + it)|2dt

)4
4π2(∑

T<γ1≤2T δ(γ1)2)( ∫ 2T
T |M( 1

2 + it)|4dt
)2L2 + o(1).

The small gaps can be treated in a similar way. Up to an error term of
size O(T 1−ε), we have∫ 2T

T
|M( 1

2 + it)|2dt =
∑

T<γ1≤2T

∫ γ1+πδ+(γ1)/L

γ1−πδ−(γ1)/L
|M( 1

2 + it)|2dt

≥
∑

T<γ1≤2T
δ0(γ1)<µ

∫ πδ+(γ1)/L

−πδ−(γ1)/L
|M( 1

2 + i(γ1 + t))|2dt

+
∑

T<γ1≤2T
δ0(γ1)≥µ

∫ πµ/L
−πµ/L

|M( 1
2 + i(γ1 + t))|2dt

≥ h1(µ,M)
∫ 2T

T
|M( 1

2 + it)|2dt

−
∑

T<γ1≤2T
δ0(γ1)<µ

∫ πµ/L
πδ0(γ1)/L

(
|M( 1

2 + i(γ1 + t))|2 + |M( 1
2 + i(γ1 − t))|2

)
dt.

Hence

(h1(µ,M)− 1)
∫ 2T

T
|M( 1

2 + it)|2dt+O(T 1−ε) ≤

∑
T<γ1≤2T
δ0(γ1)<µ

∫ πµ/L
πδ0(γ1)/L

(
|M( 1

2 + i(γ1 + t))|2 + |M( 1
2 + i(γ1 − t))|2

)
dt.
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Using Cauchy’s inequality, the right hand side is

≤
(2πµ
L

) 1
2
( ∑
T<γ1≤2T
δ0(γ1)<µ

1
) 1

2

( ∑
T<γ1≤2T
δ0(γ1)<µ

∫ πµ/L
πδ0(γ1)/L

(
|M( 1

2 + i(γ1 + t))|4 + |M( 1
2 + i(γ1 − t))|4

)
dt

) 1
2

≤
(2πµ
L

) 1
2
( ∑
T<γ1≤2T
δ0(γ1)<µ

1
) 1

2
(
h2(µ,M)

∫ 2T

T
|M( 1

2 + it)|4dt
) 1

2
.

Thus, if h1(µ,M) > 1,

(2.3)
∑

T<γ1≤2T
δ0(γ1)<µ

1 ≥
(h1(µ,M)− 1)2( ∫ 2T

T |M( 1
2 + it)|2dt

)2
2πµh2(µ,M)

∫ 2T
T |M( 1

2 + it)|4dt
L+ o(1).

In the rest of the paper, we will illustrate the inequality h1(λ,M1) < 1 <
h1(µ,M2) for suitable λ, µ, M1, M2, and evaluate the expressions in (2.2)
and (2.3).
Remark. To exhibit the existence of positive proportion of large and small
gaps, we need to show that the orders of magnitude of the right hand sides
in (2.2) and (2.3) are T log T . It will be clear later in our proof that this
requires (∫ 2T

T
|M( 1

2 + it)|2dt
)2
� T
∫ 2T

T
|M( 1

2 + it)|4dt.

This condition restricts the choice of our Dirichlet polynomial M .

3. Auxiliary lemmas
We need various lemmas concerning divisor sums and other divisor-like

sums. We first introduce some notations which we will use throughout. Let
Ar(n) = Ar(n, 1), where

Ar(n, s) :=
∏
pλ||n

∑∞
j=0 dr(pj)dr(pj+λ)p−js∑∞
j=0 dr(pj)2p−js

(σ > 1).

We define
Fτ (n) =

∏
p|n

(1 +O(p−τ )),

for τ > 0 and the constant in the O-term is implicit and independent of τ .
We note that

Ar(n, s)� dr(n)Fτ (n) (σ ≥ τ > 0).
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Lemma 3.1. We have∑
n≤y

dr(n)2

n
= ar(log y)r2

Γ(r2 + 1)
+O((log y)r2−1),

where

ar =
∏
p

((
1− 1
p

)r2 ∑
n≥0

dr(pn)2

pn

)
.

Proof. The proof of this fact is standard. �

Lemma 3.2. There exists an absolute constant τ0 > 0 such that

∑
m≤x

dr(m)dr(mn)
m

= arAr(n)(log x)r2

Γ(r2 + 1)
+O(dr(n)Fτ0(n)(log x)r2−1).

Proof. We note that G(m) = g(mn)/g(n) is a multiplicative function when-
ever g is (provided that g(n) 6= 0). Hence

∞∑
m=1

dr(m)dr(mn)
ms

=
∏
p-n

( ∞∑
j=0

dr(pj)2

pjs

) ∏
pλ||n

( ∞∑
j=0

dr(pj)dr(pj+λ)
pjs

)

= ζ(s)r2Ar(n, s)
∏
p

((
1− 1
p

)r2 ∞∑
j=0

dr(pj)2

pjs

)
,

for σ > 1. The lemma follows by applying Theorem 2 of Selberg [18]. �

The following lemma is an easy consequence of Lemma 3.1.

Lemma 3.3. Given that

M(s) =
∑
n≤y

dr(n)f( log y/n
log y )

ns
.

Then we have∫ 2T

T
|M( 1

2 + it)|2dt ∼ arT (log y)r2

Γ(r2)

∫ 1

0
(1− x)r2−1f(x)2dx.

Proof. Using Montgomery & Vaughan’s mean value theorem [15] we have

∫ 2T

T
|M( 1

2 + it)|2dt ∼
∑
n≤y

dr(n)2f( log y/n
log y )2

n
.

The lemma follows from Lemma 3.1 and Stieltjes integration. �
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In order to estimate the nominator of hk(α,M) we will use Cauchy’s
residue theorem. To this end, we need a Dirichlet series for ξ′′/ξ′(s). From
the definition of the Riemann ξ-function we have

(3.1) ξ′

ξ
(s) = L(s) + ζ

′

ζ
(s),

where

(3.2) L(s) = 1
s

+ 1
s− 1

− log π
2

+ 1
2

Γ′

Γ

(
s

2

)
.

We modify Lemma 3.1 of Farmer & Gonek [9] to give

Lemma 3.4. For σ > 1, T < =s ≤ 2T and K a large positive integer we
have

ξ′′

ξ′
(s) = L

2
+
∞∑
n=1

aK(n, s)
ns

+O(1).

Here we have written

aK(n, s) =
K∑
k=0

αk(n)
L(s)k

,

where
αk(n) =

{
−Λ(n) if k = 0
Λk−1 ∗ Λ log(n) if k ≥ 1.

Remark. The function Λk for k ≥ 0 is the k-fold convolution of the von
Mangoldt function, defined by(

− ζ
′

ζ
(s)
)k

=
∞∑
n=1

Λk(n)
ns
.

Proof. We start with formula (7.1) in [9]
ξ′′

ξ′
(s) = ξ

′

ξ
(s) + L

′(s) + (ζ ′/ζ)′(s)
L(s) + ζ ′/ζ(s)

.

In view of (3.1), this is equal to

(3.3) L(s)−
∞∑
n=1

Λ(n)
ns

+ L
′(s) + (ζ ′/ζ)′(s)
L(s) + ζ ′/ζ(s)

.

Our goal now is to approximate the last term by a Dirichlet series. We
have for t > C (see Theorem 5.17 [20])

ζ(s) = O((log t)5) for σ ≥ 1− (log log t)2

log t
,

and
ζ(s) 6= 0 for σ ≥ 1− C log log t

log t
.
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With the choice θ(t) = (log log t)2

log t and φ(t) = 5 log log t, Theorem 3.11 [20]
gives

ζ ′

ζ
(s) = O

( log t
log log t

)
uniformly for σ ≥ 1− C log log t

log t
.

An easy application of Cauchy’s theorem leads to(
ζ ′

ζ

)′
(s) = O

( log t
log log t

)
uniformly for σ ≥ 1− C log log t

log t
.

Also, we deduce from (3.2) that

(3.4) L(s) = 1
2

log s
2π

+O
( 1
|s|+ 2

)
, and L′(s)� 1

|s|+ 2
.

Hence for σ > 1 and T < =s ≤ 2T , T large enough, we have∣∣∣∣ζ ′ζ (s)L(s)−1
∣∣∣∣, ∣∣∣∣(ζ ′ζ

)′
(s)L(s)−1

∣∣∣∣ ≤ 1
2
.

Hence by (3.3),

ξ′′

ξ′
(s) = L(s)−

∞∑
n=1

Λ(n)
ns

+
(
ζ ′

ζ

)′
(s)L(s)−1

K−1∑
k=0

(
− ζ
′

ζ
(s)L(s)−1

)k
+O(2−K + (TL)−1).

Using the definition of the k-fold von Mangoldt function, this can be written
as
ξ′′

ξ′
(s) = L(s)+

∞∑
n=1

1
ns

(
−Λ(n)+

K−1∑
k=0

(Λk ∗ Λ log)(n)
L(s)k+1

)
+O(2−K+(TL)−1).

The lemma follows. �

Lemma 3.5. Let σ = 1 + L−1. Then for x > 0 we have
1

2πi

∫ σ+i2T

σ+iT

xiτ

L(s)k
ds =

{
T
2π (L2 )−k(1 +OK(L−1)) if x = 1
OK
( 1
| log x|

)
otherwise,

where s = σ + iτ .

Proof. Using (3.4) we have

L(s)−k = (1 +O((log τ)−1))
(1

2
log s

2π

)−k
.

The case x = 1 follows immediately.
For x 6= 1, integration by parts leads to

xit

i log xL(s)k

∣∣∣∣2T
T

+ k

i log x

∫ 2T

T

xitL′(s)
L(s)k+1dt.
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Using (3.4), this is

� 1
| log x|

(
1 + k

∫ 2T

T

dt

τ(1/2 log τ/2π)k+1

)
� 1
| log x|

.

The proof is complete. �

The next two lemmas concern various sums involving αk(n).

Lemma 3.6. For αk(n) defined as in the previous lemma we have

Tk(x) =
∑
n≤x

αk(n)Ar(n)
n

=
{
−r log x+O(1) if k = 0
rk(log x)k+1

(k+1)! +O((log x)k) if k ≥ 1.

As a consequence, for x� T 1/2 we obtain
∑
n≤x

K∑
k=0

(
L

2

)−kαk(n)Ar(n)
n

= −r log x+
K∑
k=1

(
L

2

)−k rk(log x)k+1

(k + 1)!
+O(K).

Proof. We will just prove the first statement. We need to separate the cases
k = 0, k = 1 and k ≥ 2. We have

T0(x) = −
∑
n≤x

Λ(n)Ar(n)
n

= −
∑
pλ≤x

(log p)Ar(pλ)
pλ

= −
∑
p≤x

(log p)Ar(p)
p

+O(1) = −r
∑
p≤x

log p
p

+O(1)

= −r log x+O(1).

Similarly for k = 1,

T1(x) =
∑
n≤x

(Λ log)(n)Ar(n)
n

=
∑
pλ≤x

λ(log p)2Ar(pλ)
pλ

=
∑
p≤x

(log p)2Ar(p)
p

+O(1) = r(log x)2

2
+O(1).

Now for k ≥ 2 we have

Tk(x) =
∑
n≤x

(Λk−1 ∗ Λ log)(n)Ar(n)
n

=
∑
n≤x

∑
pλ|n

λ(log p)2Λk−1( n
pλ

)Ar(n)
n

=
∑
n≤x

∑
p|n

(log p)2Λk−1(np )Ar(n)
n

+O((log x)k)

=
∑
p≤x

(log p)2

p

∑
n≤x/p

Λk−1(n)Ar(pn)
n

+O((log x)k).(3.5)
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We are going to prove by induction that there exists an absolute constant
τ0 such that for k ≥ 1

(3.6)
∑
n≤x

Λk(n)Ar(mn)
n

= r
kAr(m)(log x)k

k!
+O(dr(m)Fτ0(m)(log x)k−1).

For the base case we have∑
n≤x

Λ(n)Ar(mn)
n

=
∑
pλ≤x

(log p)Ar(mpλ)
pλ

=
∑
p≤x

(log p)Ar(mp)
p

+O(dr(m)Fτ (m))

= rAr(m) log x+O(dr(m)Fτ (m)).

Now for k ≥ 1,

∑
n≤x

Λk+1(n)Ar(mn)
n

=
∑
n≤x

∑
pλ|n

(log p)Λk( npλ )Ar(mn)
n

=
∑
n≤x

∑
p|n

log pΛk(np )Ar(mn)
n

+O(dr(m)Fτ0(m)(log x)k)

=
∑
p≤x

log p
p

∑
n≤x/p

Λk(n)Ar(mnp)
n

+O(dr(m)Fτ0(m)(log x)k).

Using the induction hypothesis and the prime number theorem, the main
term is

= r
k

k!
∑
p≤x

(log p)Ar(mp)
p

(
log x
p

)k
+O(dr(m)Fτ0(m)(log x)k)

= r
k+1Ar(m)(log x)k+1

(k + 1)!
+O(dr(m)Fτ0(m)(log x)k).

This completes the proof for (3.6).
Now using (3.6) in (3.5) and the prime number theorem we deduce that

for k ≥ 2

Tk(x) = rk−1

(k − 1)!
∑
p≤x

(log p)2Ar(p)
p

(
log x
p

)k−1
+O((log x)k)

= r
k(log x)k+1

(k + 1)!
+O((log x)k).

The proof of the lemma is complete. �
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Lemma 3.7. Uniformly in k we have∑
n≤x

αk(mn)dr(n)
n

� r
k(logm)k+1(log x)k+1

(k + 1)!
.

As a consequence, for any fixed τ0 > 0, we have∑
n≤x

αk(n)dr(n)Fτ0(n)
n

� (log x)k+1.

Proof. The arguments of the first statement is similar to those of the pre-
vious lemma. For the second statement we have

Fτ0(n) ≤
∏
p|n

(1 +Ap−τ0) =
∑
d|n
d−τ0Aw(d),

for some A > 0 and where w(d) is the number of prime factors of d. Hence∑
n≤x

αr(n)dr(n)Fτ0(n)
n

�
∑
n≤x

Aw(n)

n1+τ0

∑
j≤x/n

αr(jn)dr(jn)
j

� r
k(log x)k+1

(k + 1)!
∑
n≤x

Aw(n)dr(n)(logn)k+1

n1+τ0

� (log x)k+1,

since Aw(n)dr(n)(r logn)k/(k + 1)!� nτ0/2 for sufficiently large n. �

4. Proof of Theorem 1.1
We first consider the large gaps. We are taking a(n) = dr(n), i.e.

M(s) =
∑
n≤y

dr(n)f( log y/n
log y )

ns
.

Using Cauchy’s residue theorem we have∑
T<γ1≤2T

|M( 1
2 + iγ1 + it)|2 = 1

2πi

∫
C

ξ′′

ξ′
(s− it)M(s)M(1− s)ds,

where C is the positively oriented rectangle with vertices at 1−a+ i(T +t),
a+ i(T + t), a+ i(2T + t) and 1− a+ i(2T + t). Here and throughout the
paper a = 1 + L−1. Now for s inside or on C we have

M(s)� y1−σT ε.
As in [8] (Chapter 17), we can choose T ′ such that T+1 < T ′ < T+2, T ′+t is
not the ordinate of a zero of ξ′(s) and (ξ′′/ξ′)(σ+iT ′)� (log T )2, uniformly
for −1 ≤ σ ≤ 2. A simple argument using Cauchy’s residue theorem then
yields that the contribution of the bottom edge of the contour is � yT ε.
Similarly, so is that of the top edge.
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Now from the functional equation we have

ξ′′

ξ′
(1− s− it) = −ξ

′′

ξ′
(s+ it).

Hence the contribution from the left edge, by substituting s by 1− s, is

1
2πi

∫ a−i(2T+t)

a−i(T+t)

ξ′′

ξ′
(1− s− it)M(s)M(1− s)ds

= − 1
2πi

∫ a−i(2T+t)

a−i(T+t)

ξ′′

ξ′
(s+ it)M(s)M(1− s)ds.

We note that this is precisely the conjugate of the contribution from the
right edge. Thus, up to an error term of size O(yT ε),
(4.1)∑
T<γ1≤2T

|M( 1
2 +iγ1+it)|2 = 2<

( 1
2πi

∫ a+i(2T+t)

a+i(T+t)

ξ′′

ξ′
(s− it)M(s)M(1− s)ds

)
.

Using Lemma 3.4, we can write the expression in the above bracket as

(4.2) I1 + I2 +O(TLr2),

where

I1 = L
4π

∫ 2T

T
|M( 1

2 + it)|2dt,

and

I2 = 1
2πi

∫ a+i(2T+t)

a+i(T+t)

∞∑
n=1

aK(n, s− it)
ns−it

M(s)M(1− s)ds.

Note that we have moved the line of integration in I1 to the 1/2-line with
an admissible error of size O(yT ε).

Expanding M(s) we have

I2 =
∑
m,l≤y

∞∑
n=1

K∑
k=0

dr(m)dr(l)f [m]f [l]αk(n)
ln−it

1
2πi

∫ a+i(2T+t)

a+i(T+t)

1
L(s− it)k

(
l

mn

)s
ds.

Here we denote f( log y/m
log y ) by f [m]. Using Lemma 3.5, we can decompose

I2 as I21 + I22, where

I21 = T
2π
∑
m,l≤y
l=mn

K∑
k=0

(
L

2

)−k dr(m)dr(l)f [m]f [l]αk(n)
ln−it

,
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and

I22 �
∑
m,l≤y
l 6=mn

K∑
k=0

dr(m)dr(l)|αk(n)|
l| log l

mn |

(
l

mn

)a
.

We first treat the error term. We note that

α0(n) = −Λ(n)� logn, and αk(n) = Λk−1 ∗ Λ log(n) ≤ (logn)k+1.

Hence

(4.3) I22 �
∑
m,l≤y
l 6=mn

dr(m)dr(l)
l| log l

mn |

(
l

mn

)a
(logn)K+1.

We now separate whether | log l
mn | ≥ 1 or | log l

mn | < 1. The contribution
of the terms | log l

mn | ≥ 1 to the right hand side of (4.3) is

�
∑
m,l≤y

dr(m)dr(l)
m

∞∑
n=1

(logn)K+1

n1+1/L � yL2r(KL)K .

For the remaining terms, let us assume that l < mn (the other case can
be done similarly). We write mn = l + r, where 1 ≤ r � l. Then we have
| log l

mn | � r/l. Hence the contribution of these to the right hand side of
(4.3) is

�
∑
m,l≤y

∑
1≤r�l

dr(m)dr(l)
r

LK+1 � y2LK+2r.

Thus

(4.4) I22 � yL2r(KL)K + y2LK+2r.

Now for the main term we have

I21 = T
2π
∑
n≤y

K∑
k=0

(
L

2

)−kαk(n)
n1−it

∑
m≤y/n

dr(m)dr(mn)f [m]f [mn]
m

.

From Lemma 3.2, using the Stieltjes integration we obtain∑
m≤y/n

dr(m)dr(mn)f [m]f [mn]
m

= arAr(n)
Γ(r2)

∫ y/n
1

(log u)r2−1

u
f [u]f [un]du

+O(dr(n)Fτ0(n)(log y)r2−1).

On one hand, the contribution of the O-term to I21, using Lemma 3.7, is

(4.5) � T (log y)r2−1∑
n≤y

K∑
k=0

(
L

2

)−k |αk(n)|dr(n)Fτ0(n)
n

� TKLr2 .
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On the other hand, Lemma 3.6 and the Stieltjes integration yield that the
contribution of the main term to I21 is

arT

2πΓ(r2)

∫ y
1

∫ y/v
1

(
− (r + 1) +

K∑
k=0

(2r log v/L)k

k!

)
(log u)r2−1

uv1−it
f [u]f [uv]dudv +O(TKLr2).

Substituting u = y1−x and v = yη leads to

arT (log y)r2+1

2πΓ(r2)

∫ 1

0

∫ x
0

(1− x)r2−1yitη
(
− (r + 1) +

K∑
k=0

(rη)k

k!

)
f(x)f(x− η)dηdx+O(TKLr2).

Hence, combining with (4.4) and (4.5) we have

I2 = arT (log y)r2+1

2πΓ(r2)

∫ 1

0

∫ x
0

(1− x)r2−1yitη
[
exp(rη)− (r + 1)

]
f(x)f(x− η)dηdx+O(yL2r(KL)K)

+O(y2LK+2r) +O(TKLr2) +O(TLr2+1(3r/K)K).

We can ignore the error terms by choosing, for instance, K = (log log T )2

and y = T 1/2L−K . We next take the integration of (4.1) from −πα/L to
πα/L and combine with Lemma 3.3. Simple calculations then give
h1(α,M) = o(1) + α

+ 2
π

∫ 1
0
∫ x

0
sin(αηπ/2)
η (1− x)r2−1[ exp(rη)− r − 1

]
f(x)f(x− η)dηdx∫ 1

0 (1− x)r2−1f(x)2dx
.

With the choice r = 2 and f(x) = 1+7x−1.5x2 we obtain h1(1.5) = 0.9998.
Similarly, for a(n) = µr(n), we have
h1(α,M) = o(1) + α

+ 2
π

∫ 1
0
∫ x

0
sin(αηπ/2)
η (1− x)r2−1[ exp(−rη) + r − 1

]
f(x)f(x− η)dηdx∫ 1

0 (1− x)r2−1f(x)2dx
.

The choice r = 2 and f(x) = 1+4.4x+2.3x2 yields h1(0.7203) = 1.000002.
This is precisely what we require in (2.1). The proof of the theorem is

complete.

5. Proof of Theorem 1.2
In this section, we shall choose our Dirichlet polynomial to be of the form

M(s) =M1(s) +M1(1− s),
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where
M1(s) = 1 +

∑
p≤y

f [p]
ps
.

This type of Dirichlet polynomial has previously been employed by Soun-
dararajan in [19].

We first consider the denominator of h1(α,M). We have∫ 2T

T
|M( 1

2 + it)|2dt = 2
∫ 2T

T
|M1( 1

2 + it)|2dt+ 2<
(∫ 2T

T
M1( 1

2 + it)2dt

)
.

By the Montgomery & Vaughan’s mean value theorem [15] we obtain∫ 2T

T
M1( 1

2 + it)2dt ∼ T,

and ∫ 2T

T
|M1( 1

2 + it)|2dt ∼ T
(

1 +
∑
p≤y

f [p]2

p

)
.

Hence

(5.1)
∫ 2T

T
|M( 1

2 + it)|2dt ∼ T
(

4 + 2
∑
p≤y

f [p]2

p

)
.

For the nominator, as in (4.2), we have

(5.2)
∑

T<γ1≤2T
|M( 1

2 + iγ1 + it)|2 = 2<(J1 + J2) +O(TLr2),

where

(5.3) J1 = L
4π

∫ 2T

T
|M( 1

2 + it)|2dt,

and

J2 = 1
2πi

∫ a+i(2T+t)

a+i(T+t)

∞∑
n=1

aK(n, s− it)
ns−it

M(s)M(1− s)ds.

Since

M(s)M(1− s) =M1(s)2 + 2M1(s)M1(1− s) +M1(1− s)2,

we proceed by writing, say, J2 = J21 + J22 + J23.
As in the previous section, noting that αk(1) = 0, we obtain

(5.4) J21 � (KL)K .

Also

J22 = 2T
2π
∑
p≤y

K∑
k=0

(
L

2

)−k f [p]αk(p)
p1−it

+O(y(KL)K+1 + y2LK).
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We note that

αk(p) =


− log p if k = 0
(log p)2 if k = 1
0 if k ≥ 2.

So

(5.5) J22 = −2T
2π
∑
p≤y

log p(1− 2 log p/L)f [p]
p1−it

+O(y(KL)K+1 + y2LK).

Similarly we have

J23 = 2T
2π
∑
p≤y

K∑
k=0

(
L

2

)−k f [p]αk(p)
p1−it

+ T
2π
∑
p,q≤y

K∑
k=0

(
L

2

)−k f [p]f [q]αk(pq)
(pq)1−it

+O((KL)K+1 + y2LK).

Now the first term is precisely the main term of J22. Furthermore, it is
standard to verify that the second term is

(5.6) 4T
2π
∑
p6=q≤y

log p log q(log p+ log q)f [p]f [q]
L2(pq)1−it +O(T ).

We next take the integration of (5.2) from −πα/L to πα/L. Combining
(5.1), (5.3)–(5.6) and ignoring the error terms (by choosing some admissible
K and y as before) we easily obtain

h1(α,M) = α+ g1(α) + g2(α) + o(1),

where

g1(α) = − 4
π

∑
p≤y(1− 2 log p/L) sin(πα log p

L )f [p]/p
2 +
∑
p≤y f [p]2/p

,

and

g2(α) = 4
π

∑
p,q≤y log p log q sin(πα log(pq)

L )f [p]f [q]/(L2pq)
2 +
∑
p≤y f [p]2/p

,

We now choose

f [p] = −c
(

1− 2 log p
L

)
sin
(
πα log p
L

)
,

where c is some constant which we will specify later. Then from the prime
number theorem and the Stieltjes integration we have

h1(α,M) = h1(α, c) = α+ 4Uc+ V c2

π(2 + Uc2)
+ o(1),

where

U =
∫ 1

0

(1− u)2 sin2(παu2 )du
u

,
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and

V =
∫ 1

0

∫ 1

0
(1− u)(1− v) sin

(παu
2
)

sin
(παv

2
)

sin
(πα(u+ v)

2
)
dudv.

The optimal choice of c will then be

c± = V ±
√
V 2 + 8U3

2U2 .

With the help of Maple, we can verify that h1(1.18, c−) = 0.9995 and
h1(0.796, c+) = 1.00006.

We are left to prove that

(5.7)
( ∫ 2T
T |M( 1

2 + it)|2dt
)4(∑

T<γ1≤2T δ(γ1)2)( ∫ 2T
T |M( 1

2 + it)|4dt
)2 � TL−1,

and

(5.8)
( ∫ 2T
T |M( 1

2 + it)|2dt
)2

h2(µ,M)
∫ 2T
T |M( 1

2 + it)|4dt
� T.

Following the arguments of Fujii [11] one can show that∑
T<γ1≤2T

δ(γ1)2 � TL.

The estimates (5.7) and (5.8) now just follow from [4] (see (16) and (17)).
This completes the proof of the theorem.
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